1استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس
2محقق، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس
3مربی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس
چکیده
در این تحقیق، در سطوح مختلف آلودگی به نانواکسید روی، اثر تیمارهای میکروبی بر میزان آزادسازی روی در خاکهای ریزوسفری تحت کشت یونجه، با استفاده از معادلات سینتیکی منتخب بررسی گردید. این آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار بر روی گیاه یونجه (Medicago sativa L.) در گلخانه اجراء گردید. تیمارها شامل سه سطح (0، 400 و 800 میلیگرم در کیلوگرم خاک) نانواکسید روی و چهار سطح مایهزنی میکروبی (شاهد، قارچ S. indica، باکتری S. meliloti و تلقیح توأم قارچ و باکتری) در نظر گرفته شد. به منظور انتخاب بهترین مدل توصیف الگوی انتشار روی، از معادلات سینتیکی متعددی استفاده و برای هر یک از تیمارهای آزمایشی، مدلهای مذکور برازش و بهترین معادله سینتیکی انتخاب گردید. نتایج نشان داد که تلقیح توأم قارچ و باکتری در سطح400 و در رتبه بعدی در سطح800 میلیگرم روی در کیلوگرم، کمترین مقدار پهاش را به خود اختصاص دادند که به ترتیب کاهشی برابر با 25/15 و 81/6 درصد را نسبت به سطح صفر روی نشان میدهد. همچنین در سطح 800 میلیگرم روی در کیلوگرم، تلقیح انفرادی قارچ و توأم با باکتری با ارجحیت یکسان، بیشترین توانایی را در آزاد سازی روی خاک ریزوسفری نشان دادند بطوریکه بهترتیب منجر به افزایش 79/27 و 42/26 درصدی مقدار روی تجمعی آزاد شده نسبت به شرایط بدون تلقیح شدند. بررسی الگوی آزاد سازی روی تحت تأثیر سطوح مختلف روی و تلقیح میکروبی نشان داد که روند آزاد سازی روی در تیمارهای مختلف خاک ریزوسفری، یک فرآیند انتشار دو مرحلهای است. بررسی مقدار ضرایب تبیین و خطای استاندارد معادلات سینتیکی نشان داد که به ترتیب معادلات شبه مرتبه دوم و تابع توانی در کلیه تیمارهای آزمایشی و معادله الوویچ ساده شده تنها در سطح صفر روی، برآورد خوبی از آزاد سازی روی خاک ریزوسفری دارند.
Study of Serndipita indica and Sinorhizobium meliloti on concentration and kinetics of zinc release in alfalfa rhizosphere contaminated with zinc oxide nanoparticles
نویسندگان [English]
Vahid Mohasseli1؛ Leila Tabande2؛ Sohrab Sadeghi3
1Assistant Professor, Fars Agricultural and Natural Resources Research and Education Center
2Researcher, Fars Agricultural and Natural Resources Research and Education Center
3Member of Scientific Board, Fars Agricultural and Natural Resources Research and Education Center
چکیده [English]
Nanotechnology is emerging as a new solution in sustainable agriculture through the production of nano-fertilizers and increased efficiency of plant use of trace elements. Various features of nano-fertilizers, such as high mobility in soil due to their very small size (less than 100 nm) and high solubility in water, have increased efficiency and, as a result, better access of plants to the nutrients contained in nano-fertilizers in the soil around the roots. For example, nano-zinc oxide (ZnO) is one of the sources of fertilizer that provides the zinc required by plants in soils poor in zinc. However, excessive use of these fertilizers in soils with low zinc availability, such as calcareous soils, has caused excessive accumulation of zinc and consequently soil contamination, which has caused toxicity in plants, humans, livestock, and beneficial soil microorganisms by accumulating large amounts of this element on the root surface and entering large amounts into plant tissues. The complex process of transferring such heavy metals from soil to plants is affected by various factors such as the type, size, density and duration of contact of nanoparticles with soil, plant type, soil and soil microorganisms, which play an effective role in the behavior of these metals in rhizosphere soil and ultimately affect the amount of their absorption by plants. Therefore, studying the chemical behavior and kinetics of release of heavy elements in rhizosphere soil, which examines the changes in the amount of these elements in the soil over time and estimates their usable amount for plants, leads to a better understanding of the reactions taking place in the phytoremediation process of these elements from soil. Phytoremediation of soils contaminated with heavy metals is one of green technologies and environmental friendly that is important in terms of low cost, so that use of microorganisms increases efficiency of the method. Beneficial soil microorganisms affect on elements plants uptake by influencing on rhizosphere biochemistry and plant physiological processes. Plant growth-promoting bacteria and fungi in the rhizosphere improve plant growth in soils contaminated with heavy metals and produce more plant biomass, thereby increasing the absorption of heavy metals from the soil and thereby reducing the toxic effects of these metals on the plant. Therefore, it is necessary to pay special attention to the effect of microbial treatments on zinc release in rhizosphere soils under alfalfa cultivation using selected kinetic equations at different levels of zinc oxide contamination.
Materials and Methods: This study was conducted as a factorial based on a completely randomized design with three replications on alfalfa (Medicago sativa L.) cultivar Hamedani in a greenhouse. Treatments included three levels (0, 400 and 800 mg kg-1 soil) of zinc oxide nano and four levels of microbial inoculation (control, S. indica, S. meliloti and co-inoculation of fungi and bacteria). In order to find the best model to describe zinc diffusion pattern, several kinetic equations were used and for each of the experimental treatments, the best kinetic equation was selected and then the effect of each of the applied treatments was investigated on zinc diffusion pattern.
Results: The results showed that combined inoculation of fungi and bacteria at the level of 400 and 800 mg Zn kg-1 had the lowest pH value, which showed a decrease of 15.25 and 6.81 percent, respectively, compared to the zero Zn level. Also, at the level of 800 mg Zn kg-1, individual inoculation of fungi and bacteria with the same preference showed the highest ability to release zinc from the rhizosphere soil, leading to an increase of 27.79 and 26.42 percent, respectively, in the amount of cumulative zinc released compared to the condition without inoculation. The study of zinc release pattern under the influence of zinc different levels and microbial inoculation showed that process of zinc release in different treatments of rhizosphere soil is a two-stage diffusion process that starts with a fast step and reaches equilibrium after a slow step. In the initial rapid phase, zinc release corresponds to mobility forms with low bond energy and in the second stage, to forms with less mobility. Investigation of determination coefficients and standard error of kinetic equations showed that pseudo-second-order and power function equations in all experimental treatments and simplified Elovitch equation only at zinc zero level, respectively, have a good estimate of zinc release on rhizosphere soil. The positive and significant correlation between zinc release constant of the mentioned equation (qe) and plant available zinc concentrations (extraction by DTPA in 2 hours) as well as zinc concentrations in root tissue and shoots of alfalfa plant, can be one of reasons for superiority of this model over other kinetic equations to describe zinc release pattern in rhizosphere soil.