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Abstract:  This study presents scientific research on 
Fusarium redolens Wollenw. A systematic search of 
the Scopus database from 1956 to 2023 yielded 201 
indexed  documents.  F.  redolens is  an  emerging 
pathogen  with  a  significant  impact  on  pulse  crops. 
Population  growth,  especially  in  developing 
countries,  creates  a  primary  problem:  food 
availability, especially protein sources. Chickpeas are 
an  important  crop  in  western  Iran,  especially  in 
Kermanshah  province.  Until  2019,  most  studies 
attributed  chickpea  yellowing  and  root  rot  to 
Fusarium  oxysporum and  Fusarium  solani, 
respectively.  To  manage  this  crop,  previous 
recommendations  included  planting  cereals  such  as 
barley and wheat due to the presence of F. oxysporum 
formae speciales in the soil. However, F. redolens has 
now been identified as the major cause of chickpea 
yellowing  and  root  rot,  especially  in  the  western 
provinces. This Fusarium species have been isolated 
from 54 species of 50 genera and 29 plant families, 
with  the  highest  frequency  observed  in  Fabaceae, 
Poaceae  and  Asteraceae  hosts.  Given  its 
pathogenicity to wheat and barley and the unknown 
presence  of  formae  speciales,  rotation  with  these 
cereals  is  no  longer  considered  an  appropriate 
management solution.  Further research is needed to 
develop  effective  management  strategies  for  the 
future.
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INTRODUCTION

As a common pathogen, saprobe, and endophyte, 
Fusarium is one of the most  ecologically  important 
genera of soil-dwelling fungi (Summerell et al. 2011). 
The fungus has been isolated from a wide range of 
soil  types  throughout  the  world.  This  genus  is  a 
member  of  the  class  Sordariomycetes,  order 

Hypocreales,  division  Ascomycota,  subdivision 
Pezizomycotina, and family Nectriaceae (Kirk  et al. 
2008).  Fusarium species exhibit niche differentiation 
within  the  complex  microbial  tapestry  of  the  soil 
environment.  In  particular,  some  species  are  very 
efficient at breaking down organic matter in the soil. 
This  decomposition  process,  known  as 
mineralization, releases essential nutrients for plants 
and  other  soil  organisms.  This  contributes 
significantly to the vital nutrient cycle within the soil 
ecosystem (Stoner 1981, Paul & Clark 1989, Ruiter et 
al.  1994). This is due to their capacity for saprobic 
digestion. Many Fusarium species are important plant 
pathogens that  can cause a range of plant  diseases, 
including  foliar  diseases,  dieback,  canker,  vascular 
wilt,  seed and fruit  decay,  onion rot,  stem rot,  and 
root rot (Dean et al. 2012, Chehri et al. 2017, Trabelsi 
et al. 2017, Sharma & Marques 2018). Several studies 
have demonstrated the endophytic colonization of the 
root  cortex  (endorhiza)  by  non-pathogenic  species 
within the Fusarium genus (Dababat & Sikora 2007). 
The  management  of  soil-borne  plant  diseases  has 
proven  to  be  a  useful  application  of  these  non-
pathogenic Fusarium (Steinberg et al. 2007, Zhang et 
al. 2015, Šišić et al.  2017, Shadmani et al. 2018). 

Fusarium  redolens Wollenw.  has  recently  been 
reported  as  an  emerging  pathogen  threatening 
chickpea  production  in  Iran.  Due  to  the  economic 
importance of chickpea and its vast area of cultivation 
in Iran, especially in the western provinces, this crop 
has  become  the  major  host  for  F.  redolens in  the 
country. This  fungus  causes  significant  quantitative 
economic  losses  to  chickpea  production. The  area 
under chickpea cultivation in Iran is  about  439,872 
hectares, 95% of which is rain-fed. Iran is the ninth 
largest producer of chickpeas in the world after India, 
Australia,  Ethiopia,  Turkey,  Myanmar,  the  Russian 
Federation, Pakistan, and Mexico (FAOSTAT 2021). 
Iran  produces  about  168,000 tons  of  chickpeas  per 
year, accounting for 2% of global production. More 
than 80% of chickpea production in Iran comes from 
the  provinces  of  Kermanshah,  Lorestan,  Kurdistan, 
East  Azerbaijan,  and  West  Azerbaijan  (Western 
Provinces).  Worldwide,  the  average  grain  yield  of 
chickpeas  is  850  kg⋅ha-1,  and  in  Asia,  it  is  919.7 
kg⋅ha-1 (FAOSTAT 2021). Chickpea yield in Iran is 
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much  lower  than  the  world  average.  The  world 
average yield of chickpea is about 1800 kg⋅ha-1.  In 
Iran, however, the average yield is only 400 kg⋅ha-1. 
Kermanshah  province  is  the  leading  chickpea 
producer  in  Iran,  accounting for  nearly 28% of  the 
total  area  (141,520  ha).  The  Bivanij  cultivar 
dominates the region (except in cold and high-altitude 
areas) due to its faster maturity, higher biomass, and 
grain  yield  compared  to  other  cultivars  (Azad, 
Hashem,  ILC482).  However,  pathogens  and  poor 
management practices significantly affect production. 
Studies  show  that  F.  oxysporum and  related  fungi 
(FOSC)  are  a  major  threat  in  western  Iran,  where 
rainfall  exceeds  400  mm  (Younesi  et  al.,  2020). 
Therefore, accurate identification of Fusarium species 
is essential for the development of effective control 
measures.

Chickpea Fusarium disease history: World

Fusarium species are among the most devastating 
pathogens  of  chickpeas  globally.  The  first 
documented  instance  of  chickpea  wilt  occurred  in 
India,  reported by Butler  in 1918. The disease was 
also reported in Myanmar in 1923, but the exact cause 
of  the  disease  was  unknown  until  Padwick's 
successful  identification  of  the  causative  agent  in 
1940 (Erwin 1958). In a study conducted by Prasad 
and Padwick in 1939, a total of 300 Fusarium isolates 
were collected from chickpeas.  These isolates  were 
divided into  three  different  groups.  The first  group 
included  non-pathogenic  isolates,  while  the  second 
group was found to be responsible for wilt  disease. 
The  third  group  was  found  to  cause  seed  rot.  The 
Fusarium isolates in the second group were named F. 
orthoceras var. ciceri. Erwin isolated some strains of 
Fusarium  from  wilted  chickpeas  in  California  and 
named them  F. lateritium (Erwin 1958). He divided 
them into two groups: F. lateritium f. sp. crotalariae 
(syn: F. udum var. crotalariae), which causes wilt of 
sunn hemp (Crotalaria juncea), and F. lateritium f. sp. 
cajani (syn:  F. udum var.  cajani), which causes wilt 
of lentil (Cajanus cajan).

In an experiment, Fusarium strains isolated from 
chickpea  in  India  were  compared  to  those  isolated 
from  chickpea  in  California  (Erwin  1958).  Both 
strains  were  morphologically  and  pathogenically 
similar and were therefore introduced under the name 
F. lateritium f.  sp.  ciceri.  Echandi (1970) separated
Fusarium isolates from chickpea in Peru and reported
them as F. oxysporum. It was shown that the isolated
Fusarium strains causing wilt symptoms in chickpeas
were  all  F.  oxysporum  and  F.  lateritium was  not
isolated (Echandi 1970).  F. oxysporum f. sp.  ciceris
(Padwick)  Matuo  (Foc)  and  K.  Sato,  exhibits  two
main  pathotypes:  a  yellowing  type  causing
progressive leaf yellowing and vascular discoloration,
and a wilting type inducing severe chlorosis, wilting,

and  vascular  discoloration  (Trapero-Casas  & 
Jiménez-Díaz  1985).  Additionally,  eight  pathogenic 
races  (0,  1A,  1B/C,  2,  3,  4,  5,  and  6)  have  been 
identified  within  this  forma  specialis (Haware  & 
Nene  1982,  del  Mar  Jiménez-Gasco  et  al.  2001). 
Within F. oxysporum f. sp. ciceris, races 0 and 1B/C 
are  associated  with  a  yellowing  symptom,  and  the 
remaining  races  are  associated  with  a  wilting 
symptom (del Mar Jiménez-Gasco et al. 2001, 2003). 
Yield losses in chickpea due to the presence of this 
pathogen have been reported to be up to 15% and in 
some  cases  up  to  70%  (Halila  &  Strange  1996, 
Honnareddy & Dubey 2006).

At  present,  based  on  morphological 
characteristics,  F.  oxysporum f.  sp.  ciceri has  been 
reported  as  the  major  causal  agent  of  chickpea 
diseases  in  many  parts  of  the  world,  including 
Australia,  Canada,  Egypt,  Ethiopia,  India,  Pakistan, 
Peru, Turkey, Spain, Syria, Tunisia, the United States 
and  other  countries  (Chattopadhyay  &  Sen  Gupta 
1967, Echandi 1970, Westerlund et al. 1974, Trapero-
Casas  &  Jimnez-Diaz  1985,  Bhatti  &  Kraft  1992, 
Haware  et al.  1996, Nene  et al.  1996, Demirei  et al. 
1998,  Esmaeili  Taheri  et  al.  2011).  The 
morphological  similarity  between  Fusarium spp., 
particularly F. oxysporum and F. redolens, can lead to 
misidentification based solely on these characteristics. 
This  overlap  raises  the  possibility  that  previous 
identifications of F. oxysporum may have included F. 
redolens (Jiménez-Fernández  et  al.  2011,  Saeedi  & 
Jamali  2021).  An isolate  of  F.  redolens previously 
thought to be F. oxysporum f. sp.  asparagi was now 
shown  to  be  F.  redolens (Blok  &  Bollen  1997). 
Molecular  techniques  have  revealed  F.  redolens as 
the  causative  agent  of  chickpea  root  rot  in  several 
countries,  including  Canada,  Lebanon,  Morocco, 
Pakistan,  Spain,  the  Netherlands,  and  Tunisia 
(Baayen  et  al.  2000,  Esmaeili  Taheri  et  al.  2011, 
Leisso et al.  2011, Bouhadida et al.  2017, Rafique et 
al. 2020). A study by Jiménez-Fernández et al. (2011) 
showed that  infection of  chickpea with  F. redolens 
induced a disease syndrome similar to that caused by 
the  yellowing  pathotype  of  F.  oxysporum f.  sp. 
ciceris.  To date, at least nine Fusarium species have 
been reported to infect chickpeas around the world. 
These  include  F.  culmorum,  F.  equiseti,  F. 
graminearum,  F. hostae, F. oxysporum f. sp.  ciceris,
F. proliferatum, F. redolens, F. sporotrichioides and
F. verticillioides  (Esmaeili  Taheri  et  al.  2011,
Jendoubi et al. 2017, Saeedi & Jamali 2021, Younesi
et al. 2021, Geraminasab et al. 2023).

Chickpea Fusarium disease history: Iran

Fusarium wilt  reduces both seed yield and seed 
weight in chickpea production in Iran. Chickpea yield 
losses of up to 15% annually and up to 70% in severe 
outbreak years have been reported. Chickpea wilting 
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and yellowing diseases were first reported in Iran by 
Manuchehri  and  Mesri  from  Khoy,  Shapur,  Ahar, 
Miandoab,  Karaj,  Gonbad,  Shiraz,  Isfahan,  and 
Kashan (Manuchehri & Mesri 1966). At that time, the 
pathogen F. lateritium f. sp. ciceris was diagnosed by 
sending samples of the fungus isolated from infected 
chickpeas  to  California.  F.  oxysporum f.  sp.  ciceri 
was introduced by Banihashemi (1986) as the causal 
agent  of  chickpea  wilt  in  Shiraz.  In  1993,  isolates 
obtained from the root and crown of wilted chickpea 
plants  in  rainfed  fields  in  Lorestan  province  were 
identified as  F. oxysporum (Nazari & Ershad 1993). 
In Fars province,  the causal  agent  of  chickpea root 
rot,  F.  solani f.  sp.  pisi,  and  the  causal  agent  of 
chickpea yellowing and wilting,  F. oxysporum f. sp. 
ciceri, were identified (Mohammadi & Banihashemi 
2005).  Graminasab  et  al.  (2014)  identified  four 
species,  including  F.  oxysporum,  F.  solani (Mart) 
sacc,  F.  proliferatum (Matsus)  Nirenberg,  and  F. 
equiseti (corda) sacc, as the major causes of wilting 
and yellowing in chickpea. Since then, several reports 
have been published on the genetic variability of the 
pathogen. In Kermanshah province, Nourollahi et al. 
(2017)  found  nine  fingerprint  groups  among  45  F. 
oxysporum f.  sp.  ciceris isolates  from  commercial 
chickpea  fields  using  five  microsatellite  primers. 
Azimi  et  al.  (2017)  employed  12  inter  simple 
sequence repeat (ISSR) primers to analyze the genetic 
diversity of  F. oxysporum f. sp.  ciceris isolates from 
chickpea in Ilam province, Iran. Their study identified 
24 distinct fingerprint groups among 47 isolates. This 
contrasts  with  previous  research  in  western  Iran, 
which  suggested  only  five  pathogenic  groups  were 
present (Younessi  2004).  Races  1,  2,  and  4  were 
identified based on disease symptoms in chickpeas, as 
documented  by  Haware  and  Nene  (1982).  Earlier 
identifications  relied  primarily  on  morphological 
features of the pathogen.  Fusarium oxysporum f. sp. 
ciceris is  widely  accepted  as  the  main  cause  of 
Fusarium wilt in chickpeas. Until 2009, there were no 
reports on the pathogenicity of  F. redolens on crops 
in Iran. Based on morphological and species-specific 
primers,  Ghanbarzadeh  et  al.  (2014)  identified  F. 
redolens as  a  pathogen of  red onion,  causing basal 
and bulb rot. Chehri (2016) showed that  F. redolens 
is  associated  with  tomatoes  in  Iran  based  on 
morphological and molecular phylogenetic analyses, 
and  his  research  confirmed  the  prevalence  of  F. 
redolens in Iran. Chehri (2018) also showed that  F. 
redolens is  one of the most common fungi isolated 
from agricultural soils in Kermanshah province, Iran.

Fusarium  redolens has  been  reported  as 
pathogenic on a wide range of hosts in Iran, including 
Cicer arietinum,  Malus domestica,  Mentha piperita, 
Salsola incanescens, Triticum aestivum and Zea mays 
as pathogenic (Habibi et al. 2018, Jahedi et al.  2019, 
Fallahi et al. 2019, Razghandi et al. 2020, Younesi et 
al. 2021, Esmaili & Sharifnabi 2023). Interestingly, it 

has  also  been  found  as  an  endophyte  in  Achillea 
millefolium,  A.  filipendulina and  Hordeum  vulgare 
(Shadmani  et  al.  2021,  Hatamzadeh  et  al.  2023). 
Studies  suggest  F.  redolens may  significantly 
contribute to chickpea black root rot in Iran. Younessi 
et  al.  (2021)  found  it  caused  high  disease  rates  in 
certain  chickpea  varieties.  Additionally,  Saeedi  and 
Jamali  (2021)  reported  its  frequent  presence  in 
uncultivated  soil  and  its  identification  from 
symptomatic  chickpea roots.  Their  findings warrant 
further investigation into F. redolens' role and biology 
in Iran's chickpea crops.

Fusarium redolens

History of research on Fusarium redolens between 
1956 and 2024

In  the  period  from  1956  to  2024,  201  and  99 
published  documents  were  identified  fulfilling  the 
search  criteria  in  Scopus  and  Web  of  Science, 
respectively.  Figure  1  shows  the  evolution  of  the 
number of publications per year. Between 1956 and 
2010 (54 years),  65 documents were published and 
the  number  of  publications  per  year  was  less  than 
five. Most of these articles have been concerned with 
isolation and pathogenicity F. redolens on plants such 
as  carnation  (Gerlach  &  Pag  1961,  Baayen  et  al. 
1997), peas and beans (Hepple 1960, Clarkson 1978), 
asparagus (Gordon-Lennox & Gindrat 1987), oil palm 
(Ho et al. 1985), maize (O'Donnell et al.  1999), rose 
(Ypema et  al.   1987)  and  white  pine  (Ocamb  & 
Juzwik  1995).  An  increase  in  the  number  of 
publications was observed from 2010 onward (Figure 
1),  and  a  sharp  rise  in  indexed  documents  was 
observed  in  2021  (n=22).  Fifty-six  percent  of  the 
articles were published between 2016 and 2024. The 
first  article  titled  "Pathogenicity  of  the  fungus 
Fusarium  redolens Wr.;  clinico-experimental 
research"  (Kozin  1956)  was  published  in  Vestnik 
venerologii  i  dermatologii  Journal  (30:28-31).  The 
paper  is  written  in  Russian  and  focuses  on  the 
pathogenicity of the fungus  Fusarium redolens Wr., 
through clinico-experimental research.

Figure 2 shows the areas of knowledge related to 
the  studies  of  F.  redolens published  between  1956 
and  2023.  In  this  regard,  (i)  Agriculture  and 
Biological  Sciences  (146  documents),  (ii) 
Biochemistry,  Genetics,  and Molecular  Biology (47 
documents), and (iii) Immunology and Microbiology 
(29 documents), contributed with 47.7%, 15.5%, and 
9.5%  of  the  indexed  documents,  respectively. 
Agriculture and Biological Sciences was ranked first 
on this list because most of the publications consisted 
of the isolation, identification, and characterization of 
F. redolens populations  associated  with  different
plant species in various countries. The largest number
of  articles  was  published  in  Plant  Disease  (n=22),
followed  by  Journal  of  Phytopathology  (n=9).  The
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leading  countries  in  studies  related  to  F.  redolens 
were China, the United States, the Netherlands, and 
Iran, which contributed 34, 25, 18, and 15 documents, 
respectively (Fig. 3).

Figures 4 and 5 show the research-topic map of F. 
redolens studies  between  1956  and  2024.  The 
network visualization contains  95 items grouped in 
four clusters (Fig. 4). In this regard, the biggest node, 
which corresponds to the keyword with the highest 
occurrences, was  F. redolens (Fig. 4). Many isolates 
of this fungus from plants were initially misidentified 
as  F.  oxysporum.  Both  are  within  the  same cluster 
(the red one)  (Saeedi  and Jamali  2021).  Here,  it  is 
clear  the  special  interest  in  the pathogenicity  of  F. 
redolens in plants. This species has been reported as a 
pathogenic agent in more than 50 host plants. 

Figure  5  shows how the  research  topics  moved 
from  species  specificity/asparagus/asparagus 
officinalis/biosynthesis/metabolism/beauvericin/F. 
oxysporum (2010  to  2012),  passing  by 
classification/biodiversity/microbiology/F. edolens/F. 
hostae (beginning  of  2012),  molecular  analysis/ 
rDNA/  fungal  DNA/  morphology/  phylogenetics 
/internal  transcribed  spacer/  morphology (beginning 
of  2012)  to  wheat/  controlled  study/  root 
rot/pathogenicity/wilt/symptom/endophytes  (end  of 
2018). Further studies should be focused on the effect 
of  environmental  parameters  on  the  severity  of  F. 
redolens  disease  and  control  measures  for  future 
outbreaks of F. redolens (Saeedi and Jamali 2021). 

Taxonomy of Fusarium redolens

The exact taxonomic placement of F. redolens is a 
subject of ongoing debate.  Wollenweber (1913) first 
described  F.  redolens and  maintained  this 
nomenclature  in  subsequent  publications 
(Wollenweber  1916-1935,  1931,  Wollenweber  & 
Reinking  1935).  Traditionally,  size  differences  in 
macroconidia were the primary way to distinguish F. 
oxysporum from  F.  redolens (Gordon,  1952). 
However,  their  similar  morphology  led  to  earlier 
classifications  grouping  them  as  the  same  species 
(Snyder  &  Hansen,  1940;  Nelson  et  al.,  1983),  a 
variety  of  F.  oxysporum (Gordon,  1952;  Booth, 
1975),  or  even  F.  solani (Bilaĭ,  1955). The  use  of 
molecular methods is necessary to correctly identify 
and separate Fusarium species. Almost all molecular 
studies for  Fusarium identification have been based 
on comparison of rDNA internal transcribed spacers. 
Previous studies have shown that sequence data from 
the ITS rDNA region is not sufficient to distinguish 
the Fusarium taxa studied (Zhao  et al.  2011, Raja  et 
al.  2011, Šišić  et al.  2018, Alhawatema et al.  2019). 
Baayen  et  al.  (2000)  have  successfully  used 
restriction  fragment  length  polymorphism  (RFLP) 
patterns  of  rRNA  internal  transcribed  spacer  (ITS) 
regions to  diagnose  F. oxysporum and  F. redolens. 

Fusarium  oxysporum is  polymorphic  for  AluI  and 
Hinfl  and  has  produced  three  RFLP  fragments. 
Fusarium redolens cannot be distinguished from its 
close relative F. hostae by this technique (Baayen et 
al. 2001).  Many  researchers  have  reported  that  the 
tef1-α gene has a higher resolution than ITS and can 
provide a sufficient phylogenetic signal to distinguish 
between  different  Fusarium  species.  The  transfer 
elongation factor gene contains both conserved and 
variable  regions  that  allow  inter-  and  intraspecific 
comparisons  and  is  reliable  for  studying  the 
phylogenetic  relationships  of  Fusarium spp. 
(Kristensen  et  al. 2005).  Modern  DNA  analysis 
reveals  F.  redolens as  a  separate  species  from  F. 
oxysporum (O'Donnell  et  al.,  1998;  Baayen  et  al., 
2000, 2001; Bogale et al., 2007). These studies even 
suggest they aren't closely related. Notably, Baayen et 
al. (2001) found the  F. nisikadoi-F. miscanthi group 
to be closer to F. oxysporum than F. redolens and its 
relatives. Other research suggests F. hostae is closely 
related to  F. redolens, with strong statistical support 
(Saeedi & Jamali 2021). Bogale et al. (2007) designed 
a  specific  primer  set  (Redolens-F:  5-ATC  GAT 
TTTCCC TTC GAC TC-3; Redolens-R: 5-CAA TGA 
TGA TTGTGA TGA GAC-3) to identify F. redolens 
isolates.  This  method  effectively  differentiates  F. 
redolens from other Fusarium species, enabling rapid 
and straightforward diagnosis. Compared to previous 
methods  involving  restriction  fragment  length 
polymorphism (RFLP) analysis, these primers allow a 
simpler  distinction  between  F.  redolens and  F. 
oxysporum.

Inaccurate identification of Fusarium species has 
the  potential  to  cause  significant  issues,  including 
inappropriate  management  practices  and  the 
implementation  of  ineffective  control  strategies. 
Currently,  the  most  reliable  method  for  Fusarium 
identification is DNA sequencing. The gold standard 
for  this  involves targeting the translation elongation 
factor  1-alpha  (TEF1)  gene  region.  A  publicly 
available  database called FUSARIUM-ID exists  for 
comparing TEF1 sequences against known Fusarium 
species  (Geiser et  al.  2004). In  some  cases,  TEF1 
alone  might  not  be  sufficient  for  differentiating 
closely related species.  Multi-locus sequence typing 
(MLST) involves sequencing multiple gene regions, 
such as TEF1 and RNA polymerase II second largest 
subunit (rpb2) for a more robust identification.

Pathogenic Fusarium redolens isolates

Fusarium  redolens  has  been  reported  as  a 
pathogenic  agent  in  more  than  50  host  plants 
including; soybean (Glycine max),  Chinese skullcap 
(Scutellaria  baicalensis),  Tobacco (Nicotiana 
tabacum),  alfalfa (Medicago  sativa),  asparagus 
(Asparagus officinalis),  Rye (Secale  cereale), wheat 
(Triticum aestivum),  potato (Solanum  tuberosum), 
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faba  bean  (Vicia  faba),  parsley  (Petroselinum 
crispum),  gastrodia  (Gastrodia  elata),  lentil  (Lens 
culinaris),  American Ginseng (Panax quinquefolius), 
Duohua  huangjing  (Polygonatum cyrtonema),  black 
cumin (Nigella  sativa),  Carnation  (Dianthus 
caryophyllus), jojoba (Simmondsia chinensis), Barley 
(Hordeum vulgare), red clover (Trifolium pratense), 
cotton (Gossypium hirsutum), Lilium candidum,  flax 
(Linum usitatissimum),  lanzhou  lily  (Lilium davidii 
var.  unicolor),  Salsola (Salsola sp.),  rice (Oryza 
sativa),  spinach  (Spinacia  oleracea), onion 
(Allium cepa),  rocket  (Diplotaxis  tenuifolia),  maize 
(Zea mays),  sugar beet  (Beta vulgaris),  white lupin 
(Lupinus  albus),  tomato (Solanum lycopersicum), 
sunflower (Helianthus  annuus),  roses  (Rosa spp.), 
ragwort  (Jacobaea  vulgaris),  pea (Pisum  sativum), 
oat  (Avena sativa),  Atractylodes  chinensis and  date 
palm  (Phoenix dactylifera) (Larsson  &  Olofsson 
1994,  Baayen et  al.  2000,  Riccioni  et  al.  2008, 
Jiménez-Fernández et al. 2011, Esmaeili Taheri et al. 
2011, Al-Sadi et al. 2012, Shikur Gebremariam et al. 
2015, Jing et al. 2016, Pearson et al. 2016, Bouhadida 
et al. 2017, Esmaeili Taheri et al. 2017, Chehri 2018, 
Taylor et al.  2019,  Fallahi et al.  2019,  Rafique et al. 
2020, Le et al.  2020, Maymon et al. 2021, Qostal et 
al.  2021, Šišić et  al.  2022,  Abi  Saad et  al.  2022, 
Gibert et al. 2022, Li et al. 2022, Litovka et al. 2023, 
Olszak-Przybyś et  al.  2023,  Jiang et  al.  2023, 
Armstrong-Cho et al. 2023, Gai et al. 2023, Wang et 
al.  2023,  Jia  et  al.  2023,  Xie  et  al.  2023). Several 
types  of  forest  plants  that  have  reportedly  been 
attacked  by  F.  redolens  are  Aleppo  pine  (Pinus 
halepensis),  conifers (Pinus,  Cupressus,  Picea), and 
koa (Acacia koa) (Lazreg et  al.  2014,  Dobbs et  al. 
2023). Disease  symptoms  caused  by  F.  redolens 
include  root  rot (Olszak-Przybyś et  al.  2023, 
Armstrong-Cho  et  al.   2023),  root  and  crown  rot 
(Baayen et al. 2000), crown rot (Shikur Gebremariam 
et  al.  2015),  wilt (Jia et  al.  2023),  vascular  wilt 
(Rafique et al. 2020), collar rot (Le et al. 2020), bulb 
rot (Cao  et  al.  2020),  seedling  blight (Wang et  al. 
2019), basal rot (Haapalainen et al. 2016), wilting and 
yellowing (Taylor  et  al.  2019),  ear  rot  and  kernel 
contamination (Fallahi et  al.  2019),  damping  off 
(Lazreg  et  al.  2014),  root,  crown,  and  foot  rot 
(Esmaeili Taheri et al. 2017), spear rot (Baayen et al. 
2000), and black rot (Ypema et al. 1987). 

Non-pathogenic Fusarium redolens isolates 

Non-pathogenic  F.  redolens isolates  have  been 
shown  to  grow  endophytically  in  the  endorhiza  of 
many  plants  including;  rice (Oryza sativa),  olive 
(Olea  europaea),  Russian  wormwood (Artemisia 
Sacrorum),  Salsola (Salsola sp.),  maigoya (Coleus 
forskohlii),  barley  (Hordeum vulgare L.),  oriental 
paperbush  (Edgeworthia  chrysantha),  lemon 
bergamot  (Monarda  citriodora),  Himalayan  yew 

(Taxus  wallichiana), esparto or needle  grass 
(Macrochloa  tenacissima),  cocoa  (Theobroma 
cacao),  Chinese  foxglove  (Rehmannia  glutinosa), 
Stipa grandis, Fritillaria unibracteata var. wabuensis, 
and Dioscorea zingiberensis (Su et al. 2010, Xu et al. 
2010, Garyali et al.  2013, Pan et al. 2015, Katoch & 
Pull 2017, Shadmani et al.  2018, Mastan et al.  2019, 
Razghandi et al.  2020,  Gargouri et al.  2020,  Ambele 
et al. 2020, Hong-juan et al.  2021, Nazir et al.  2022, 
Roy et al. 2023). 

Extracted  beauvericin  from  non-pathogenic  F. 
redolens isolates of Dioscorea zingiberensis has been 
used  effectively  as  an  antibacterial  against  several 
bacteria.  These  include Agrobacterium tumefaciens, 
Bacillus  subtilis,  Escherichia  coli,  Pseudomonas 
lachrymans,  Staphylococcus  haemolyticus and 
Xanthomonas vesicatoria (Xu et al.  2010). Recently, 
ethyl  acetate was  isolated  from  F.  redolens, 
increasing the interest in strains of this species, since 
ethyl acetate  showed significant cytotoxic potential 
against HepG2 cells (Nazir et al.  2022). Metabolites 
such  as  3,4-dihydrocoumarin,  5'-
deoxyribonucleoside,  harmala  alkaloid,  benzofuran, 
and benzothiazole have also been obtained from  F. 
redolens, which have inhibitory effects on wheat scab 
(Fusarium  graminearum)  (Hong-Juan  et  al.  2021). 
Mastan  et  al. (2021)  used  a  consortium  of 
Trichoderma  viride and  F.  redolens and  observed 
significant  enhancement  in  plant  growth,  root 
biomass, and forskolin content of the medicinal plant 
Coleus  forskohlii.  The  peimisine produced  by  F. 
redolens relieves sputum and cough, has anti-tumour 
activity and is a potent inhibitor of the angiotensin-
converting  enzyme  (Feng  et  al.  2015).  Taxol  is  a 
diterpenoid  derived  from  F.  redolens with  an anti-
tumor  activity  that  inhibits  microtubulin 
depolymerization, thereby affecting spindle formation 
and preventing the mitosis of tumor cells (Garyali  et 
al.  2014).  In  the  study  by  Roy  et  al. (2023),  the 
antagonistic  activity  of  F. redolens against  the rice 
pathogen  Magnaporthe  grisea was  observed. 
Inoculation  of  rice  plants  with  F.  redolens also 
increased  the  production  of  enzymes  such  as 
peroxidase,  polyphenol  oxidase,  chitinase,  and 
superoxide dismutase. Katoch and Pull (2017) have 
shown the antagonistic activity of F. redolens against 
Sclerotinia sp.  and  Colletotrichum  capsici.  They 
mentioned that  the endophyte  F. redolens could be 
used  effectively  to  control  a  wide  range  of 
phytopathogens.

Management and formae speciales

To control this disease, various crop management 
techniques  have  been  suggested,  such  as  crop 
rotation,  sanitation,  the  use  of  bacterial  or  fungal 
antagonists,  and  the  use  of  resistant  chickpea 
cultivars. One of the primary methods used in Iran to 
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control  Fusarium in  chickpeas  is  the  rotational 
planting of wheat and barley. To reduce the Fusarium 
inoculum in the soil, this is advised. The majority of 
research  in  Iran  is  based  on  morphological 
characteristics, and in the majority of the country, F. 
oxysporum has been identified as the most pathogenic 
agent of chickpeas, causing yellowing and black root 
rot  symptoms  (Afshari-Azad  1998,  Mohammadi  & 
Banihashemi 2005, 2006, Zamani  et al.  2001, 2004, 
Hasanzade  et  al.  2008,  Haji-Allahverdipoor  et  al. 
2011,  Zokaee  et  al.  2012,  Nourollahi  et  al.  2017). 
This  could  be  the  reason  this  species  hasn't  been 
identified  as  one  of  the  fungi  associated  with  root 
disease in Iranian cereal and chickpeas crops in the 
past.  The  increase  in  chickpea  cultivation  within 
wheat  rotations  might  be  linked  to  a  higher 
prevalence  of  F.  redolens in  these  fields.  Notably, 
three  formae  speciales  of  F.  redolens have  been 
formally  described:  F. redolens Wollenw.  f.  sp. 
asparagi Baayen, F. redolens f. sp. spinaciae (Sherb.) 
Subramanian, and F. redolens f. sp.  dianthi (Gerlach 
& Pag 1961, Baayen et al. 1997, 1999). 

The  concept  of  forma  specialis  may  limit  our 
understanding  of  F.  redolens isolates.  Researchers 
need to consider both aggressiveness and host range 
variation  among  individual  isolates. A  study  by 
Esmaeili Taheri et al. (2011) found F. redolens strains 
isolated from durum wheat caused severe disease in 
peas, indicating a broader host range for this fungus. 
Chittem et  al. (2015)  showed  that  cereal  Fusarium 
pathogens, including  F. culmorum,  F. graminearum, 
and F. avenaceum, are capable of causing disease on 
pulse  crops  and  dry  peas.  Moparthi  et  al. (2021) 
showed that F. redolens from dry pea, chickpea, and 
pea  seeds  were  aggressive  on  pulses,  wheat,  and 
barley. Kraft and Pfleger (2001) identified F. solani f. 
sp.  pisi  as  the  main  cause  of  pea  root  rot  in 
Washington fields. This fungus exhibits a broad host 
range,  infecting  not  only  chickpeas  but  also  other 
non-legumes  such  as  ginseng  and  mulberry.  One 
isolate of  F. redolens, previously believed to be part 
of F. oxysporum f. sp. asparagi, has been reclassified 
as F. redolens (Blok & Bollen 1997). This isolate was 
found to be pathogenic on pea and lupin, indicating 
that  it  is  not  host-specific.  Borrell  et  al. (2016) 
showed  that  F.  redolens poses  a  risk  to  wheat 
production, which is greater when rotated with pulse 
crops. In Iran, particularly in the western provinces, 
millions of hectares of rain-fed chickpeas are grown 
each  year  in  rotation  with  rain-fed  wheat.  The 
emergence of  F. redolens as a pathogen on Iranian 
crops highlights the need for a deeper understanding 
of its biology and ecological role. This knowledge is 
crucial  to  assess  its  economic  impact  and  develop 
effective  control  strategies,  particularly  if  resistant 
cultivars prove to be the most viable option. Building 
on the points above and considering the evidence of 

cross-pathogenicity,  the  current  forma  specialis 
definition may need revision.

Fusarium redolens: Ecology and Environment

The  composition  of  soil  fungal  communities, 
including  Fusarium  species,  is  shaped  by  climate. 
Different Fusarium species adapt to specific climatic 
and environmental conditions, leading to variations in 
their  distribution across regions (Saremi & Burgess 
2000).  Despite existing knowledge on the impact of 
environmental  factors  on  Fusarium distribution,  the 
specific  factors  influencing  the  distribution  of  F. 
redolens in both agricultural and natural soils remain 
poorly understood. Elucidating the environmental and 
climatic determinants of Fusarium distribution would 
enable predictive modeling of species presence across 
diverse  locations.  While  prior  research  has 
established  strong  correlations  between  Fusarium 
distribution and climatic factors, the broader field of 
modeling  Fusarium  species  distribution  using 
advanced  software  tools  remains  understudied, 
despite its potential utility. Studies have consistently 
shown that climatic factors play a significant role in 
shaping the distribution patterns of Fusarium species 
(Burgess et al. 1993, Saremi et al. 1997).

Several  Fusarium  species  exhibit  distinct 
geographic distributions. Non-pathogenic species like 
F. oxysporum,  F.  solani,  and  F.  equiseti appear
widespread (cosmopolitan), while F. acuminatum and
F. sambucinum seem restricted  to  cooler  temperate
regions (Abbas  et  al. 1987,  Backhous  &  Burgess
1995, Burgess et al. 1988, Backhous et al. 2001). This
variation  likely  reflects  the  influence  of
environmental factors like temperature, soil properties
(texture  and  organic  matter),  rainfall  patterns,  and
local  vegetation,  as  previously  documented
(Summerell et al. 2010).

Saeedi and Jamali (2021) demonstrated a highly 
significant  correlation  between  species  and 
environmental parameters. In their study, all sampled 
soils  were  predominantly  alkaline,  with  pH  levels 
ranging from 7.2 to 9. Jones and Woltz (1981) found 
that  soils  with  a  pH value  greater  than 7  were  the 
most suppressive for Fusarium wilt (F. oxysporum). 
Several studies have shown that soil pH can influence 
Fusarium species and disease development. Alkaline 
soils  (higher pH) tend to suppress  F. oxysporum,  a 
fungal  pathogen causing wilt  (Borrero  et  al.,  2004; 
Fang et al., 2012; Deltour et al., 2017). In contrast, F. 
redolens appears  to  thrive  in  soils  with  neutral  to 
slightly  alkaline  pH,  while  F.  oxysporum and  F. 
solani prefer  more acidic environments. Saeedi  and 
Jamali (2021) demonstrated that F. redolens thrives in 
alkaline conditions. Mycelial growth was highest at a 
pH of 9.72, while significantly lower at pH 5.8. This 
aligns with the naturally alkaline soil found in most 
parts of Iran, including Kermanshah province, where 
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soil pH typically ranges from 7.4 to 8.2 (Qadir et al., 
2008;  Heidari  et  al.,  2008).  These  findings  suggest 
that  F.  redolens may be a significant contributor to 
chickpea root rot in this region. It's important to note 
that soil pH also impacts the availability of various 
nutrients  crucial  for  plant  health,  including  copper, 
iron,  manganese  and  zinc  (Collins  &  Buol,  1970). 
Micronutrient  acquisition by many organisms relies 
on  siderophores,  but  their  effectiveness  is  heavily 
influenced by environmental pH. This is because pH 
affects both the solubility of metals and the stability 
of  the  metal-siderophore  complexes  (chelation). 
Consequently, different species have varying abilities 
to  compete  for  these  essential  micronutrients 
depending  on  the  surrounding  pH  (Boukhalfa  & 
Crumbliss, 2002; Dhungana & Crumbliss, 2005).

A  recent  study  identified  several  key 
environmental factors influencing the distribution of 
Fusarium species in soil  (Saeedi and Jamali,  2021). 
These  factors,  listed  in  order  of  decreasing 
importance,  included  soil  texture  (specifically  the 
ratio  of  sand,  silt,  and  clay),  altitude,  calcium 
carbonate  content  (CaCO3),  electrical  conductivity 
(EC),  organic  matter  content,  and  lastly,  soil  pH. 
Interestingly, the study found that F. redolens thrived 
in  soils  with  a  higher  clay  content  compared to  F. 
oxysporum and  F. solani, which preferred soils with 
very low clay content. Studies have shown that higher 
clay content in soil can be associated with a decrease 
in Fusarium wilt severity (Deltour et al., 2017). Clay 
can  affect  pH  buffering,  nutrient  availability,  and 
oxygen  diffusion,  which  may  contribute  to 
suppression (Lavie & Stotzky 1986, Dominguez et al. 
2001).  Saeedi  and  Jamali  (2021)  revealed  that  F. 
redolens was most abundant in soils with low levels 
of  carbon  and  organic  matter.  This  aligns  with 
observations that loam and sandy loam soils, which 
typically  have  low clay  content,  also  tend  to  have 
lower organic matter content (Vujanovic et al., 2006). 
Previous studies have shown a positive link between 
organic matter content in soil and  reduced Fusarium 
disease in chrysanthemum, flax, and melon (van Rijn 
et al. 2007, Saadi et al. 2010). 

Soil  organic  matter  plays  a  crucial  role  in  soil 
health,  impacting  not  only  its  structure  but  also 
factors  like  pH,  buffering  capacity,  and  nutrient 
availability (Brady & Weil, 2000; Baum et al., 2015). 
However,  the  influence  of  organic  matter  on 
Fusarium disease can be complex. While Gehlker and 
Scholl (1974) found low pH, high organic matter, and 
clay content to favor the disease in asparagus, Saeedi 
and Jamali (2021) observed the highest abundance of 
Fusarium redolens in uncultivated soils with specific 
electrical  conductivity  (EC)  and  calcium  carbonate 
(CaCO3)  levels.  Interestingly,  Nam  et  al.  (2018) 

reported  no  significant  effect  of  increasing  EC  in 
hydroponic  nutrient  solutions  on  lettuce  Fusarium 
wilt. Research on the impact of CaCO3 on Fusarium 
survival remains limited. Although CaCO3 is used to 
adjust  soil  pH and increase calcium (Ca2+) content 
(He et al., 2014), Benson et al. (2009) suggest Ca2+ 
might  influence  various  soil-borne  diseases, 
warranting  further  exploration  in  the  context  of 
Fusarium.

Summary and prospects

While  the  recent  identification  of  Fusarium 
redolens as a chickpea pathogen in Iran represents a 
significant advancement, substantial knowledge gaps 
remain regarding its impact and management. Current 
research  highlights  its  presence;  however,  a  more 
comprehensive understanding of  F. redolens and its 
interaction with environmental factors is critical for 
developing effective control strategies.

In-depth  investigations  are  needed  to  determine 
how  soil  properties  (texture,  pH,  electrical 
conductivity  (EC),  calcium  carbonate  (CaCO3) 
content),  temperature,  nutrient  availability,  and 
organic  matter  levels  influence  F.  redolens disease 
severity. This knowledge will enable the development 
of region-specific management practices that consider 
prevailing soil conditions. 

Phylogenetic studies suggest F. redolens might be 
responsible  for  chickpea  black  root  rot  in  other 
Iranian  regions.  Further  research  is  necessary  to 
confirm this  hypothesis.  Comparative  pathogenicity 
studies  with  F.  oxysporum isolates  previously 
identified  from these  regions  should  be  conducted. 
Additionally,  morphological  identification  methods 
should be complemented with molecular techniques 
for more precise diagnosis. 

A  nationwide  survey  is  crucial  to  map  the 
geographical  distribution  and  prevalence  of  F. 
redolens affecting  chickpeas.  Furthermore, 
the characterization  of  F.  redolens isolates  from 
different regions will  provide insights into potential 
strain  diversity  and  virulence  variations.  This 
information  is  essential  for  developing  broadly 
effective management strategies.

Fig. 1. Annual growth of publications in focus area of 
Fusarium redolens (1956-2023).
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Fig. 2. Evolution of the number of publications related to Fusarium redolens between 1956 and 2023.

Fig. 3:  The network map of co-authorship based on affiliation of authors belonging to different countries.
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Fig. 4. Network visualization of the research-topic map of studies related to Fusarium redolens between 1956 and 
2023. The minimum number of occurrences of a keyword is 5.

Fig. 5. Overlay visualization of the research-topic map of studies related to  Fusarium redolens between 1956 and 
2023. The minimum number of occurrences of a keyword is 5. 
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 گیاهی بیماری زای عامل یک عنوان به  Fusarium redolens Wollenwقارچ . بر مروری
ایران در نوظهور

جمالی صمد

ایران کرمانشاه، رازی، دانشگاه طبیعی، منابع و کشاورزی پردیس کشاورزی، دانشکده گیاهپزشکی، گروه

 سیستماتیک جستجوی د.می ده ارائه Fusarium redolens قارچ مورد در شده انجام تحقیقات بر مروری حاضر مطالعه :چکیده
 عامFل یFک عنFوان بFه قFارچ این د.کر شناسایی را قارچ این با مرتبط  سند201 ،2023  تا1956 سال از اسکوپوس داده پایگاه در

 یFFک توسFFعه، حال در کشFFورهای در ویFFژه بFFه جمعیت، دارد. رشFFد نخود ویژه به حبوبات بر توجهی قابل تأثیر نوظهور، بیماری زای
 در کشFFاورزی مهم محصFFولات از یکی می باشFFد. نخFFود پروتFFئین منابع ویژه به غذا، به دسترسی آن که کند می ایجاد اصلی مشکل

.F و F. oxysporum گونه های به عمدتا] آن ریشه پوسیدگی و شدن زرد ،2019 سال از پیش تا و می شود محسوب ایران غرب

solani ه گندم و جو مانند غلات کشت محصول، این مدیریت برای قبلی های توصیه می شد. داده نسبتFFل بFFود دلیFFهای فرم وج 
 در ویژه به بیماری، این اصلی  عاملF. redolens که می دهند نشان اخیر مطالعات حال، این بود. با خاک در F. oxysporum ویژه

 گیاهی  خFFانواده29 و  جنس50 بFFه متعلFFق  گونFه54 شFFامل گیاهان از وسFFیعی طیFFف از گونFFه این ت.اسFF کشور غربی استان های
 بFFه توجFFه با ت.اس شده مشاهده آفتابگردان و گندمیان نخود، خانواده های در آن فراوانی بیشترین که است شده گزارش و جداسازی

 نظر در بیماری مFدیریت بFرای مناسب راهکFار یک عنوان به دیگر غلات این با کشت تناوب جو، و گندم برای قارچ این بیماری زایی
.است نیاز مورد مدیریت موثر استراتژی های توسعه برای بیشتری تحقیقات و نمی شود گرفته

گندم، VOSviewer نرم افزار گونه، اختصاصی آغازگرهای بیماریزایی، تخصصی،  فرم هایکلیدی: کلمات
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