Abbasi, N. & Abbasi, F. (2020). Overview of Water Resources and Consumption in Iran. Technical Report No. 57384, Agricultural Engineering Research Institute, Karaj, Iran. (in Persian).
Al-Ghobari, H. M. (2014). The assessment of automatic irrigation scheduling techniques on tomato yield and water productivity under a subsurface drip irrigation system in a hyper arid region. WIT Transactions on Ecology and The Environment, Vol. 185.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO.
Aydin, Ö., Kandemir, C. A., Kiraç, U., & Dalkiliç, F. (2021). Development of a smart irrigation system based on artificial intelligence and IoT. Sustainability, 13(14), 7805.
Bwambale, E., Abagale, F.K. & Anornu, G.K. (2022). Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agricultural Water Management, Volume 260, 107324.
Çetin, O., Üzen, N., Temiz, M.G. & Altunten, H. (2021). Improving Cotton Yield, Water Use and Net Income in Different Drip Irrigation Systems Using Real-Time Crop Evapotranspiration. Pol. J. Environ. Stud. Vol. 30, No. 5, 4463-4474.
Evans, R. G., & Sadler, E. J. (2008). Methods and technologies to improve efficiency of water use. Water Resources Research, 44(7). https://doi.org/10.1029/2007WR006200
FAO. (2012). ETo calculator, Land and water digital media series N° 36. FAO, Rome, Italy.
Gutiérrez, J., Villa-Medina, J.F., Nieto-Garibay, A. & Porta-Gándara, M.A. (2015). Automated irrigation system using a wireless sensor network and GPRS module. Transaction on instrumentation and measurement, Vol. 63, No. 1.
Incrocci. L., Marzialettib, P., Incroccia, G., Di Vitaa, A., Balendonckc, J., Bibbianid, C., Spagnole, S., & Pardossia, A. (2014). Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops. Agricultural Water Management, 131, 30-40.
Jensen, M. E., & Allen, R. G. (2016). Evaporation, evapotranspiration, and irrigation water requirements. ASCE Manuals and Reports on Engineering Practice No. 70. American Society of Civil Engineers.
Jones, H. G. (2004). Irrigation scheduling: Advantages and pitfalls of plant-based methods. Journal of Experimental Botany, 55(407), 2427–2436. https://doi.org/10.1093/jxb/erh213
Karar, M. E., Al-Rasheed, M. F., Al-Rasheed, A. F., & Reyad, O. (2020). Smart water pumping system using IoT and artificial neural networks. International Journal of Electrical and Computer Engineering, 10(5), 5017–5024.
Kehui, X., Deqin, X. & Xiwen, L. (2010). Smart water-saving irrigation system in precision agriculture based on wireless sensor network. Transactions of the CSAE, Vol.26, No.11.
Khaleghi, N. (2015). Comparison of Effective Rainfall Estimation Methods in Agriculture. Journal of Water and Sustainable Development, Vol. 2, No. 2, pp. 51-58. (in Persian).
Kiani, A. & Abbasi, F. (2021). Barresi-ye tasir-e fanavari-haye novin dar kahnash-e masraf-e ab-e keshavarzi [Investigating the impact of modern technologies on reducing agricultural water consumption]. Ab va Tose'e-ye Paydar, 2(2), 77–84. (in Persian).
Kijne, J. W., Barker, R., & Molden, D. (2003). Water productivity in agriculture: Limits and opportunities for improvement. CABI Publishing.
Liakos, V., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48.
Masseroni, D., Moller, P., Tyrell, R., Romani, R., Lasagna, A., Sali, G., Facchi, A. & Gandolfi, C. (2018). Evaluating performances of the first automatic system for paddy irrigation in Europe. Agricultural water management, 201, pp. 58–69.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Navarro-Hellin, H., Martinez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F. & Torres-Sanchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124 (1), pp. 121-131.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2011). FAO crop water productivity model to simulate yield response to water. FAO Irrigation and Drainage Paper No. 66.
Rogers, D. H., Alam, M., & Aguilar, J. (2015). Irrigation management for agricultural producers. Kansas State University Agricultural Experiment Station and Cooperative Extension Service.
Shahrokhnia, M. A., Zare, A., & Dehghani Sanij, H. (2015). Comparison of Different Tools for Drip Irrigation Planning of Citrus in Medium and Heavy Soils. Journal of Irrigation and Drainage of Iran, 3(9): 448-458. (in Persian).
Shekhar, Y., Dagur, E., & Mishra, S. (2017). Smart irrigation system using machine learning and IoT. International Journal of Engineering Sciences & Research Technology, 6(7), 132–138.
Smith, M., Muñoz, G., & van Wijk, M. T. (2010). Water management for sustainable agriculture. FAO Water Reports, 36.
Vallejo-Gómez, D., Osorio, M., & Hincapié, C. A. (2023). A review of intelligent irrigation systems in agriculture: Technologies and challenges. Computers and Electronics in Agriculture, 205, 107616.
Zhang, X., Chen, S., Sun, H., Wang, Y., & Shao, L. (2019). Root size, distribution and soil water depletion as affected by cultivars and environmental factors. Field Crops Research, 234, 1-10.
Zhang, X., Lin, X., & Luo, Y. (2019). Smart irrigation systems: A review of the latest technologies and their applications. Agricultural Water Management, 215, 48–62. https://doi.org/10.1016/j.agwat.2019.01.001
Zwart, S. J., & Bastiaanssen, W. G. M. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton, and maize. Agricultural Water Management, 69(2), 115-133.