-ASTM, 2020. Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM E1131-20.
-Ashley, R.H., Matthew, R., Gillian, G.A. and Elsie, E.E., 2013. Clays and tetracyclines: composite formulation and antibacterial properties’, in XV International Clay Conference.
-Basak, S., Samanta, K.K., Chattopadhyay, S.K. and Narkar, R., 2015. Thermally stable cellulosic paper made using banana pseudostem sap: a wasted by-product’, Cellulose, 22, pp. 2767–2776. https://doi.org/10.1007/s10570-015-0662-7
-Božič, M., Liu, P., Mathew, A.P. and Kokol, V., 2014. Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles’, Cellulose, 21, pp. 2713–2726. https://doi.org/10.1007/s10570-014-0281-8
-Browne, F., 1958. Theories of the combustion of wood and its control’, United States Department of Agriculture Forest Service Report, 2136, pp. 1–72.
-Castvan, S., Lazarevic, D., Stojanovic, P., Ivkovic, Z., Petrovic, R. and Kovic, J., 2015. Improvement of the mechanical properties of paper by starch coatings modified with sepiolite nanoparticles’, Starch, 67, pp. 373–380. https://doi.org/10.1002/star.201400171
-Davies, P.J., Horrocks, A.R. and Alderson, A., 2005. The sensitization of thermal decomposition of ammonium polyphosphate’, Thermochimica Acta, 432(1–2), pp. 73–82.
-Di Blasi, C., Branca, C. and Galgano, A., 2007. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis’, Industrial & Engineering Chemistry Research, 46, pp. 430–438. https://doi.org/10.1021/ie0612616
-Ding, Y., Huang, K., Li, W., Du, K., Lu, Y. and Zhang, T., 2020. Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis’, Energy, 195, p. 117010. https://doi.org/10.1016/j.energy.2020.117010
-Dong, L.Y. and Zhu, Y.J., 2017. A new kind of fireproof flexible inorganic nanocomposite paper and its application to the protection layer in flame-retardant fiber-optic cables’, Chemistry – A European Journal, 23, pp. 4597–4604. https://doi.org/ 10.1002/ chem.201604552
-Fu, Q., Medina, L., Li, Y., Carosio, F., Hajian, A. and Berglund, L.A., 2014. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall’, ACS Applied Materials & Interfaces, 9, pp. 36154–36163. https://doi.org/ 10.1021/acsami.7b10008
-Gholamian, H. and Javed, A., 2021. Investigating the effect of clay nanoparticles and different coatings on increasing the thermal properties and fire resistance of wood’, Color Science and Technology, 15(3), pp. 165–176.
-Guazzotti, V., Limbo, S., Piergiovanni, L., Fengler, R., Fiedler, D. and Gruber, L., 2015. A study into the potential barrier properties against mineral oils of starch-based coatings on paperboard for food packaging’, Food Packaging and Shelf Life, 3, pp. 9–18. https://doi.org/10.1016/j.fpsl.2014.09.003
-Howell, B.A., Lienhart, G.W., Livingstone, V.J. and Aulakh, D., 2014. 1-Dopyl-1,2-(4-hydroxyphenyl) ethene: A flame retardant hardener for epoxy resin’, Polymer Degradation and Stability, 175, p. 109110. https://doi.org/10.1016/j.polymdegradstab.2020.109110
-Jia, Y.L., Lu, Y. and Zhang, G.X., 2017. Facile synthesis of an eco-friendly nitrogen-phosphorus ammonium salt to enhance the durability and flame retardancy of cotton’, Journal of Materials Chemistry A, 5, pp. 9970–9981. https://doi.org/10.1039/c7ta01106g
-Kazuaki, N., Megumi, A. and Takayuki, T., 2018. Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: application to esterified bagasse/polypropylene composites’, Carbohydrate Polymers, 182, pp. 8–14. https://doi.org/10.1016/j.carbpol.2017.11.003
-Kollman, F.F.P. and Côté, W.A., 1968. Principles of wood science and technology: solid wood. Allen & Unwin.
-Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M. and Dubois, P., 2009. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites’, Materials Science and Engineering: R: Reports, 63(3), pp. 100–125. https://doi.org/10.1016/j.mser.2008.09.002
-Mortazavi, F., Resalati, H., Rasouli, S. and Asadpour, G., 2021. Investigation of industrial paper coating with recycled kaolin’, Journal of Color Science and Technology, 15(2), pp. 117–129.
-Narchin, P. and Afra, E., 2014. Characteristics, operation mechanism, and applications of clay’, Quarterly Journal of Scientific-Promotional of Nanoworld, (35), p. 4.
-Oliveira, P., Conceição, S., Santos, N.F., Velho, J. and Ferreira, P., 2004. The influence of rheological modifiers on coated papers: A comparison between CMC and MHPC’, in Proceedings of III CIADICYP Congress, Madrid/Cordoba, Spain, pp. 354–359.
-Pan, H., Song, L., Ma, L., Pan, Y., Liew, K.M. and Hu, Y., 2014. Layer-by-layer assembled thin films based on fully biobased polysaccharides: Chitosan and phosphorylated cellulose for flame-retardant cotton fabric’, Cellulose, 21(5), pp. 2995–3006. https://doi.org/10.1007/s10570-014-0318. https://doi.org/10.1007/s10570-014-0276-5
-Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N. and Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites’, European Polymer Journal, 44(8), pp. 2489–2498. https://doi.org/10.1016 /j. eurpolymj.2008.05.024
-Silva, T.C.F., Habibi, Y., Colodette, J.L., Elder, T. and Lucia, L.A., 2012. A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels’, Cellulose, 19(6), pp. 1945–1956. https://doi.org/10.1007/s10570-012-9761-x
-Song, Z., Xiao, H. and Zhao, Y., 2014. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper’, Carbohydrate Polymers, 111, pp. 442–448. https://doi.org/10.1016/j.carbpol. 2014.04.049
-TAPPI (2013) ‘Standard conditioning and testing atmospheres for paperboard pulp handsheets and related products’, TAPPI Test Methods, T 402 sp-08.
-Tavakoli, M., Ghasemian, A., Dehghani-Firouzabadi, M.R. and Mazela, B., 2021 Cellulose and its nano-derivatives as a water-repellent and fire-resistant surface: A review’, Materials, 15(1), p. 82. https://doi.org/10.3390/ma15010082
-Tutus, A., Cicekler, M. and Deniz, I., 2012 ‘Using of burnt red pine wood for pulp and paper production’, KSU Journal of Engineering Science, pp. 90–95. (In Turkish, abstract in English).
-Xiao, Z., Xu, J., Mai, C., Militz, H., Wang, Q. and Xie, Y., 2016. Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica’, Holzforschung, 70, pp. 1165–1173. https://doi.org/ 10.1515/hf-2016-0062
-Xie, J., Xu, J., Cheng, Z., Chen, J., Zhang, Z., Chen, T., Yang, R. and Sheng, J., 2020. Facile synthesis of fluorine-free cellulosic paper with excellent oil and grease resistance’, Cellulose, 27, pp. 7009–7022. https://doi.org/10.1007/s10570-020-03248-w.
-Younis, A.A., Mohamed, S.A.A., El-Samahy, M.A. and Abdel Kader, A.H., 2021. Novel fire-retardant bagasse papers using talc/cyclodiphosphazane and nanocellulose as packaging materials’, Egyptian Journal of Petroleum, 30, pp. 25–32. https://doi.org/10.1016/j.ejpe.2020.12.005
-Zaheri, S. and Asadpur, G., 2019. Feasibility study of using different types of bio-polymer coatings on paper packaging materials’, Packaging Science and Art, 10(38), pp. 18–27. (In Persian)
-Zhang, T., Wu, M., Kuga, S., Ewulonu, C.M. and Huang, Y., 2020. Cellulose nanofibril-based flame retardant and its application to paper’, ACS Sustainable Chemistry & Engineering, 8(27), pp. 10222–10229. https://doi.org/10. 1021/ acssusch emeng.0c02892
|