- Ali, A., Martelli, R., Lupia, F. and Barbanti, L., 2019.Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sensing, 11(20): 2384. DOI: 3390/rs11202384
- Anderson, D. and Burnham, K., 2004.Model selection and multi-model inference (2nd ed.). Springer-Verlag. DOI: 1007/b97636
- Avazpour, N., Faramarzi, M., Omidipour, R. and Mehdizadeh, H., 2021.Monitoring the drought effects on vegetation changes using satellite imagery (Case Study: Ilam Catchment). Geography and Environmental Sustainability, 11(4): 125-143. (In Persian). DOI: 22126/ges.2022.7130.2472
- De Martonne, E., 1926.L'indice d'aridité. Bulletin de l'Association de Géographes Français, 3(9): 3–5. DOI: 3406/bagf.1926.6322
- Du, M., Li, M., Noguchi, N., Ji, J. and Ye, M., 2023.Retrieval of fractional vegetation cover from remote sensing image of unmanned aerial vehicle based on mixed pixel decomposition method. Drones, 7(1): 43. DOI: 3390/drones7010043
- Faramarzi, M., Kesting, S., Isselstein, J. and Wrage, N., 2010.Rangeland condition in relation to environmental variables, grazing intensity and livestock owners’ perceptions in semi-arid rangeland in western Iran. The Rangeland Journal, 32(4): 367-377. DOI: 1071/RJ09022
- Gao, L., Wang, X., Johnson, B. A., Tian, Q., Wang, Y., Verrelst, J. and Gu, X., 2020.Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 364-377. DOI: 1016/j.isprsjprs.2019.11.018
- Grace, J.B. and Bollen, K.A., 2005.Interpreting the results from multiple regression and structural equation models. Bulletin of the Ecological Society of America, 86(4): 283-295. DOI: 1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2
- Helldén, U. and Tottrup, C., 2008.Regional desertification: A global synthesis. Global and Planetary Change, 64(3-4): 169-176. DOI: 1016/j.gloplacha.2008.10.006
- Huete, A. R., 1988.A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309. DOI: 1016/0034-4257(88)90106-X
- Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G., 2002.Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. DOI: 1016/S0034-4257(02)00096-2
- Imani, J., Ebrahimi, A., Gholonejad, B. and Tahmasebi, P., 2018. Comparison of NDVI and SAVI in three plant communities with different sampling intensity (Case Study: Choghakhour Lake Rangelands in Charmahal & Bakhtiri). Iranian Journal of Range and Desert Research, 25(1): 152-169. DOI: 10.22092/ijrdr.2018.116233
- Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G. and Zhang, X., 2006.Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3): 366-378. DOI: 1016/j.rse.2006.01.003
- Kabolizadeh, M., Rangzan, K. and Mohammadi, SH., 2018.Application of fusion in satellite images the Landsat-8 and Sentinel-2 in environmental monitoring. Journal of RS and GIS for Natural Resources, 9(3(32)): 53-71. (In Persian). SID. https://sid.ir/paper/189501/en
- Kigel, J., Konsens, I., Segev, U. and Sternberg, M., 2021.Temporal stability of biomass in annual plant communities is driven by species diversity and asynchrony, but not dominance. Journal of Vegetation Science, 32(2): 13012. DOI: 1111/jvs.13012
- Li, Y., Li, M., Li, C. and Liu, Z., 2020.Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific Reports, 10(1): 9952. DOI: 10.1038/s41598-020-67024-3
- Liu, B., Zhao, W., Liu, Z., Yang, Y., Luo, W., Zhou, H. and Zhang, Y., 2015.Changes in species diversity, aboveground biomass, and vegetation cover along an afforestation successional gradient in a semiarid desert steppe of China. Ecological Engineering, 81: 301-311. DOI: 10.1016/j.ecoleng.2015.04.014
- Lu, Q., Zhao, D., Wu, S., Dai, E. and Gao, J., 2019.Using the NDVI to analyze trends and stability of grassland vegetation cover in Inner Mongolia. Theoretical and Applied Climatology, 135: 1629-1640. DOI: 10.1007/s00704-018-2614-2
- Luz, L. R., Giongo, V., Santos, A. M. D., Lopes, R. J. D. C. and Júnior, C. D. L., 2021.Biomass and vegetation index by remote sensing in different caatinga forest areas. Ciência Rural, 52: e20201104. DOI: 1590/0103-8478cr20201104
- Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K. and Ramudzuli, M. R., 2023.A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15(16): 3926. DOI: 3390/rs15163926
- Mu, X., Song, W., Gao, Z., McVicar, T. R., Donohue, R. J. and Yan, G., 2018.Fractional vegetation cover estimation by using multi-angle vegetation index. Remote Sensing of Environment, 216: 44-56. DOI:1016/J.RSE.2018.06.022
- Omidipour, R., Ebrahimi, A., Tahmasebi, P. and Faramarzi, M., 2020. Grazing effects on the relationship between vegetation canopy cover and above-ground phytomass with vegetation indices in Sabzekouh region, Chaharmhal va Bakhtiari. Journal of Range and Watershed Managment, 73(1): 33-47. DOI: 10.22059/jrwm.2020.272219.1336
- Omidipour, R., Tahmasebi, P., Faizabadi, M. F., Faramarzi, M. and Ebrahimi, A. (2021).Does β diversity predict ecosystem productivity better than species diversity? Ecological Indicators, 122: 107212. DOI: 1016/j.ecolind.2020.107212
- Peng, J., Liu, Z., Liu, Y., Wu, J. and Han, Y., 2012.Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators, 14(1): 28-39. DOI: 1016/j.ecolind.2011.08.011
- Pringle, M. J., Denham, R. J. and Devadas, R., 2012.Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. International Journal of Applied Earth Observation and Geoinformation, 19: 276-285. DOI: 1016/j.jag.2012.05.015
- Purevdorj, T. and Tateishi, R., 1998.Vegetation cover estimate of arid and semi-arid regions by NOAA AVHRR data. Journal of the Japan Society of Photogrammetry and Remote Sensing, 37(1): 18-28. DOI: 4287/jsprs.37.18
- Rapiya, M., Ramoelo, A. and Truter, W., 2023.Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data. Environmental Monitoring and Assessment, 195(12): 1544. DOI: 1007/s10661-023-12133-5
- Riquelme, L., Duncan, D. H., Rumpff, L. and Vesk, P. A., 2022.Using remote sensing to estimate understorey biomass in semi-arid woodlands of South-Eastern Australia. Remote Sensing, 14(10): 2358. DOI: 3390/rs14102358
- Riquelme, L., Rumpff, L., Duncan, D. H. and Vesk, P. A., 2024.Comparing grass biomass estimation methods for management decisions in a semi‐arid landscape. Applied Vegetation Science, 27(3): e12792. DOI: 1111/avsc.12792
- Schucknecht, A., Meroni, M., Kayitakire, F. and Boureima, A., 2017.Phenology-based biomass estimation to support rangeland management in semi-arid environments. Remote Sensing, 9(5): 463. DOI: 3390/rs9050463
- Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S. and Wang, Y., 2015.Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment, 163: 326-340. DOI: 1016/j.rse.2015.03.031
- Xie, Y., Sha, Z., Yu, M., Bai, Y. and Zhang, L, 2009.A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecological Modelling, 220(15): 1810-1818. DOI: 1016/j.ecolmodel.2009.04.025
- Xue, J. and Su, B., 2017.Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017(1): 1353691. DOI: 1155/2017/1353691
- Zolfaghari, F., Azarnivand, H., Khosravi, H., Zehtabian, G. and Khalighi Sigaroodi, S., 2019. The Effect of Vegetation Cover on Microclimate in Dry land Ecosystem (Case Study: Sistan Plain). Journal of Range and Watershed Managment, 71(4): 901-914. doi: 10.22059/jrwm.2018.234109.1130
|