Abbasi, M. and Zare Chahouki, M. A., 2016. Habitat suitability modeling for Agropyron intermedium species using Ecological Niche Factor Analysis (case study: rangeland of Taleghan miany). Journal of Plant Research, 29(4): 819-832 .20.1001.1.23832592.1395.29.4.12.0. [In Persian]
Aligaz, M. A., Bekele, A., and Bogale, B. A., 2024. Predicting climate change impact on the habitat of Ethiopia’s spot-breasted lapwing using ensemble model. Global Ecology and Conservation, 54: 1-12. https://doi.org/10.1016/j.gecco.2024.e03139.
Asadian, G., 1996. Autoecology of tragacanth-producing Astragalus species and their exploitation method in Artemisia south of Alvand, Hamedan. M.Sc. thesis, Department of Rangeland and Watershed Management, Faculty of Natural Resources, Gorgan University of Agricultural Sciences and Natural Resources, Iran, 150 pp. [In Persian].
Azimi, F., Haji Hashemi, S., and Sadeghi, S.E., 2016. Factors affecting the decline of Astragalus adscendens producing tragacanth in the Golestankouh region of Khansar. the 22nd Iranian Plant Protection Congress, Iran, 27-30 Aug: 669. [In Persian].
Behmanesh, B., Tabasi, E., Fakhireh, A. and Khalasi Ahvazi, L., 2019. Modeling the distribution of medicinal plant species of Thymus kotschyanus and Achillea millefolium using ENFA and Logistic Regression. PEC, 6(13): 91-120. [In Persian].
Boissier, E. P., 1872. Flora Orientalis. Five volumes and supplement. Geneva & Basle, 317p.
Cushman, S. A., Kilshaw, K., Campbell, R. D., Kaszta, Z., Gaywood, M., and Macdonald, D. W., 2024. Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling. Ecological Modelling, 492: 110691. https://doi.org/10.1016/j.ecolmodel.2024.110691
Davis, P. H., 1970. Flora of Turkey and the East Aegean Islands. Printed in Great. Edinburgh University Press.
Dutra Silva, L., Brito de Azevedo, E., Vieira Reis, F., Bento Elias, R., and Silva, L., 2019. Limitations of species distribution models based on available climate change data: a case study in the Azorean forest. Forests, 10(7): 575. https://doi.org/10.3390/f10070575
Fu, C., Wen, X., Huang, T., Wang, Y., Liu, X., Jiang, N., and Zhao, J., 2024. Comparison of GARP and MaxEnt in Modeling Current and Future Geographic Distribution of Ceracris nigricornis Walker (Acrididae, Orthoptera) in China. Ecology and Evolution, 14(10): 1-10.
https://doi.org/10.1002/ece3.70439.
Guo, J., Zhang, C., Zhang, M., Bi, Y., Wang, M. and Li, M., 2024. Analysis of the distribution of Astragalus membranaceus var. Mongholicus in Inner Mongolia under climate change using the GEE platform. Science of Traditional Chinese Medicine, 2(3): 237-244. https://doi.org/: 10.1097/st9.0000000000000045.
Haidarian, M., Tamartash, R., Jafarian, Z., Tarkesh, M. and Tatian, M. R., 2021. The effects of climate changes on the future distribution of Astragalus adscendens in Central Zagros, Iran. Journal of Rangeland Science, 11(2): 152-170.
Jung, J. B., Park, G. E., Kim, H. J., Huh, J. H., and Um, Y., 2023. Predicting the habitat suitability for Angelica gigas medicinal herb using an ensemble species distribution model. Forests, 14(3): 592. https://doi.org/10.3390/f14030592.
Khodagholi, M., Saboohi, R., Bayat, M., Ashouri, P. and Motamedi, J., 2022. Effects of climate change on the habitat of Bromus tomentellus Boiss in south Zagros based on climate prediction model. Iranian Journal of Range and Desert Research, 29(4): 531-541. https://doi.org/10.22092/ijrdr.2022.128073. [In Persian].
Korznikov, K., Petrenko, T., Kislov, D., Krestov, P., and Doležal, J., 2023. Predicting Spruce Taiga Distribution in Northeast Asia Using Species Distribution Models: Glacial Refugia, Mid-Holocene Expansion and Future Predictions for Global Warming. Forests, 14(2): 219. https://doi.org/10.3390/f14020219.
Mahmoodi, S., Ahmadi, K., Zahravi, M. and Karami, O., 2022. Modeling of Iranian oak distribution in the southwest of Iran based on the presence-based approach Maximum Entropy (MaxEnt). Journal of Forest Research and Development, 8(2): 113-131. https://doi.org/10.30466/jfrd.2021.53916.1576. [In Persian].
Mehdizadeh, S., Ahmadi, F., and Kouzehkalani Sales, A., 2023. Development of wavelet-based hybrid models to enhance daily soil temperature modeling: application of entropy and τ-Kendall pre-processing techniques. Stochastic Environmental Research and Risk Assessment, 37(2): 507-526. [In Persian].
Mirhashemi, H., Heydari, M., Karami, O., Ahmadi, K., and Mosavi, A., 2023. Modeling climate change effects on the distribution of oak forests with machine learning. Forests, 14(3): 469. https://doi.org/10.3390/f14030469.
Mirjalili, S. A., Jaberalansar, Z. and Ghavampour, M. A., 2021. Modeling the distribution of Tamarix ramosissima in Isfahan Province based on Maximum Entropy Model (MAXENT). Journal of Arid Biome, 11(2): 45-55. https://doi.org/10.29252/aridbiom.2022.18347.1889 [In Persian].
Monnier-Corbel, A., Robert, A., Hingrat, Y., Benito, B. M., and Monnet, A. C., 2023. Species Distribution Models predict abundance and its temporal variation in a steppe bird population. Global Ecology and Conservation, 43 (2): 1-10. https://doi.org/10.1016/j.gecco.2023.e02442.
Narouei, M., Khodagholi, M. and Saboohi, R., 2024. The effect of climate change on the habitat distribution of Platychaete aucheri Boiss species in Sistan and Baluchestan province based on climate prediction model. Iranian Journal of Range and Desert Research, 31(3): 284-300. https://doi.org/10.22092/ijrdr.2024.132036. [In Persian].
Nateghi, S., Khodagholi, M., Souri, M. and Eftekhari, A., 2024. Assessment of the effects of climate change on the habitat of important rangeland species in Alborz province based on the climate prediction model. Iranian Journal of Range and Desert Research, 31(3): 301-322. https://doi.org/10.22092/ijrdr.2024.132044. [In Persian].
Pakzad, Z., Raeini Sarjaz, M. and Khodagholi, M., 2013. Evaluation of the effects of climate factors on the distribution of the habitats of Astragalus adscendens in Isfahan province. Iranian Journal of Range and Desert Research, 20(1): 112-212. https://doi.org/10.22092/ijrdr.2013.3009. [In Persian].
Salazar‐Tortosa, D. F., Saladin, B., Castro, J., and Rubio de Casas, R., 2024. Climate change is predicted to impact the global distribution and richness of pines (genus Pinus) by 2070. Diversity and Distributions, 30(2): 1-17.
https://doi.org/10.1111/ddi.13849.
Singleton, A. L., Glidden, C. K., Chamberlin, A. J., Tuan, R., Palasio, R. G., Pinter, A., ... and De Leo, G. A., 2024. Species distribution modeling for disease ecology: a multi-scale case study for schistosomiasis host snails in Brazil. PLOS Global Public Health, 4(8): 1-28. https://doi.org/10.1371/journal.pgph.0002224.
Wang, Z., Xu, D., Liao, W., Xu, Y., and Zhuo, Z., 2023. Predicting the current and future distributions of Frankliniella occidentalis (Pergande) based on the MaxEnt species distribution model. Insects, 14(5): 1-12.
https://doi.org/10.3390/insects14050458.
Yang, J., Huang, Y., Jiang, X., Chen, H., Liu, M., and Wang, R., 2022. Potential geographical distribution of the endangered plant Isoetes under human activities using MaxEnt and GARP. Global Ecology and Conservation, 38(2): 1-12.
https://doi.org/10.1016/j.gecco.2022.e02186.