Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. Journal of Genetics and Plant Breeding, 46, pp.269–278.
Balestre, M., Von Pinho, R.G., Souza, J.C. and Oliveira, R.L. 2009. Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genetic Molecular Research, 8(4), pp.1311–1322. DOI: 10.4238/vol8-4gmr658
Bornhofen, E., Benin, G., Storck, L., Woyann, L.G., Duarte, T., Stoco, M.G. and Marchioro, S.V. 2017. Statistical methods to study adaptability and stability of wheat genotypes. Bragantia, 76(1), pp.1–10. DOI: 10.1590/1678-4499.557
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Riddell, A. 2017. Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), pp.1-33. DOI: 10.18637/jss.v076.i01
Chaves, S.F.S., Krause, M.D., Dias, L.A.S., Garcia, A.A.F. and Dias, K.O.G. 2024. ProbBreed: A novel tool for calculating the risk of cultivar recommendation in multi-environment trials. G3 Genes|Genomes|Genetics, 14(3), jkae013. DOI: 10.1093/g3journal/jkae013
Cotes, J.M., Crossa, J., Sanches, A. and Cornelius, P.L. 2006. A Bayesian approach for assessing the stability of genotypes. Crop Science, 46(6), pp.2654–2665. DOI: 10.2135/cropsci2006.04.0227
Crossa, J. 2012. From genotype x environment interaction to gene by environment interaction. Current Genomics, 13(3), pp.225–244. DOI: 10.2174/138920212800543066
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G. and Cornelius, P.L. 2011. Bayesian estimation of the additive main effects and multiplicative interaction model. Crop Science, 51(4), pp.1458–1469. DOI: 10.2135/cropsci2010.06.0343
Cruz, C.D., Torres, R.A. A. and Vencovsky, R. 1989. An alternative approach to the stability analysis proposed by Silva and Barreto. Brazilian Journal of Genetics, 12(3), pp.567–580.
Dias, K.O.G., Gezan, S.A., Guimarães, C.T., Parentoni, S.N., Guimarães, P.E.O., Carneiro, N.P., Portugal, A.F., Bastos, E.A., Cardoso, M.J., Anoni, C.O., Magalhães, J.V., Souza, J.C., Guimarães, L.J.M. and Pastina, M.M. 2018. Estimating genotype × environment interaction for and genetic correlations among drought tolerance traits in maize via factor analytic multiplicative mixed models. Crop Science, 58(1), pp.72–83. DOI: 10.2135/cropsci2016.07.0566
Dias, K.O.G., Santos, J.P.R., Krause, M.D., Piepho, H.P., Guimarães, L.J.M., Pastina, M.M. and Garcia, A.A.F. 2022. Leveraging probability concepts for cultivar recommendation in multi-environment trials. Theoretical and Applied Genetics, 135(4), pp.1385–1399. DOI: 10.1007/s00122-022-04041-y
Eberhart, S.A. and Russell, W.A. 1966. Stability parameters for comparing varieties. Crop Science, 6(1), pp.36–40. DOI: 10.2135/cropsci1966.0011183X000600010011x
Eskridge, K.M. 1990. Selection of stable cultivars using a safety first rule. Crop Science, 30(2), pp.369–374. DOI: 10.2135/cropsci1990.0011183X003000020025x
Fabreti, L.G. and Höhna, S. 2022. Convergence assessment for Bayesian
phylogenetic analysis using MCMC simulation. Methods in Ecology and Evolution, 13(1), pp. 77–90. DOI: 10.1111/2041-210X.13727
Finlay, K.W., and Wilkinson, G.N. 1963. The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6),
pp.742–754. DOI: 10.1071/AR9630742
Gauch, H.G. and Zobel, R.W. 1988. Predictive and postdictive success of
statistical analyses of yield trials. Theoretical and Applied Genetics, 76(1),
pp.1–10. DOI: 10.1007/BF00288824
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B. 2013. Bayesian data analysis. 3rd edition. Chapman and Hall/CRC. 675 pp. DOI: 10.1201/b16018
Guiver, J. and Snelson, E. 2009. Bayesian inference for Plackett–Luce ranking models. pp.377–384. In Proceedings of the 26th annual international conference on machine learning, Montreal, Quebec, Canada.
Josse, J., van Eeuwijk, F.A., Piepho, H.P. and Denis, J.B. 2014. Another look
at Bayesian analysis of AMMI models for genotype-environment data. Journal
of Agricultural, Biological and Environmental Statistics, 19(2),
pp.240–257. DOI: 10.1007/s13253-014-0168-z
Lin, C.S. and Binns, M.R. 1988. A method of analyzing cultivar x location x year experiments: A new stability parameter. Theoretical and Applied Genetics, 76(3), pp.425–430. DOI: 10.1007/BF00265344
Luce, R.D. 1959. Individual choice behavior: a theoretical analysis. John Wiley. 153 pp. DOI: 10.1037/14396-000
Malikouski, R.G., Ferreira, F.M., Chaves, S.F.S., Couto, E.G.O., Dias, K.O.G. and Bhering, L.L. 2024. Recommendation of Tahiti acid lime cultivars through Bayesian probability models. PLOS ONE, 19(3), e0299290. DOI: 10.1371/journal.pone.0299290
Malosetti, M., Ribaut, J.-M. and van Eeuwijk, F.A. 2013. The statistical analysis of multi-environment data: modeling genotype by environment interaction and its genetic basis. Frontiers in Physiology, 4, pp.1–17. DOI: 10.3389/fphys.2013.00044
Miranda, I.R., Dias, K.O.G., Júnior, J.D.P., Carneiro, P.C.S., Carneiro, J.E.S., Carneiro, V.Q., Souza, E.A., Melo, L.C., Pereira, H.S., Vieira, R.F. and Martins, F.A.D. 2024. Use of Bayesian probabilistic model approach in common bean varietal recommendation. Crop Science, 64(6), pp.3163-3173. DOI: 10.1002/csc2.21340
Nardino, M., Baretta, D., Carvalho, I.R., Olivoto, T., Follmann, D.N., Vincius, J.S., Ferrari, M., de Pelegrin, A.J., Konflanz, V.A. and de Souza, V.Q. 2016. Restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) for analyzing the agronomic performance of corn. African Journal of Agricultural Research, 11(48), pp.4864-4872. DOI: 10.5897/AJAR2016.11691
Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Marchioro, V.S., de Souza, V.Q. and Jost, E. 2019. Mean performance and stability in multi-environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), pp.2949-2960. DOI: 10.2134/agronj2019.03.0220
Olivoto, T., Nardino, M., Carvalho, I.R., Follmann, D.N., Ferrari, M., Szareski, V.J., de Pelegrin, A.J. and de Souza, V.Q. 2017. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits. Genetics and Molecular Research, 16(1), pp.1-19. DOI: 10.4238/gmr16019525
Piepho, H.P., Möhring, J., Melchinger, A.E. and Büchse, A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 161(1), pp.209–228. DOI: 10.1007/s10681-007-9449-8
Piepho, H.-P. 1997. Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics, 53(2), pp.761–766. DOI: 10.2307/2533976
Plackett, R.L. 1975. The analysis of permutations. Journal of the Royal Statistical Society Series C: Applied Statistics, 24(2), pp.193–202.
Plaisted, R.L. and Peterson, L.C. 1959. A technique for evaluating the ability of selections to yield consistently in different locations and seasons. American Potato Journal, 36, pp.381-385. DOI: 10.1007/BF02852735
Przystalski, M. and Lenartowicz, T. 2023. Organic system vs. conventional-A Bayesian analysis of Polish potato post-registration trials. The Journal of Agricultural Science, 161(1), pp.97–108. DOI: 10.1017/S0021859623000084
R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. pp. 3921.
Shiri, M., Moharramnejad, S., Estakhr, A., Fareghi, Sh., Najafinezhad, H., Khavari Khorasani, S., Afarinesh, A., Anvari, K. and Eshraghi-Nejad, M. 2024. Determining the stability of new maize hybrids with WAASBY and MTSI indices. Journal of Crop Breeding, 16(2), pp.14-28 (in Persian). DOI: 10.61186/jcb.16.2.14
Shukla, G.K. 1972. Some statistical aspects of partitioning genotype environmental components of variability. Heredity, 29(2), pp.237–245. DOI: 10.1038/hdy.1972.87
Smith, A.B. and Cullis, B.R. 2018. Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica, 214(8), pp.1-19. DOI: 10.1007/s10681-018-2220-5
Smith, A.B., Cullis, B.R. and Thompson, R. 2001. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics, 57(4), pp.1138–1147. DOI: 10.1111/j.0006-341X.2001.01138.x
Smith, A.B., Cullis, B.R. and Thompson, R. 2005. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. The Journal of Agricultural Science, 143(6), pp.449–462. DOI: 10.1017/S0021859605005587
Toler, J.E. 1990. Patterns of genotypic performance over environmental arrays. Ph. D. Dissertation. Clemson University. Clemson University. 154 pp.
Ullman, J.B. 2006. Structural equation modeling: Reviewing the basics and moving forward. Journal of Personality Assessment, 87, pp.35-50. DOI: 10.1207/s15327752jpa8701_03
van Eeuwijk, F.A., Bustos-Korts, D. and Malosetti, M. 2016. What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Science, 56(5), pp.2119–2140. DOI: 10.2135/cropsci2015.06.0375
Verma, M.M., Chahal, G.S. and Murty, B.R. 1978. Limitations of conventional regression analysis a proposed modification. Theoretical and Applied Genetics, 53(2), pp.89–91. DOI: 10.1007/BF00817837
Wricke, G. 1965. Zur berechnung der ökovalenz bei sommerweizen und hafer. Zeitschrift fur Pflanzenzuchtung, 52(2), pp.127–138.
Yan, W., Hunt, L.A., Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), pp.597–605. DOI: 10.2135/cropsci2000.403597x