| 
		
Abdullah, A.Y.M., Masrur, A., Adnan, M.S.G., Baky, M., Al, A., Hassan, Q.K., Dewan, A. 2019. Spatio-Temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sensing, 11, 790. https://doi.org/10.3390/rs11070790Abera, T.A., Vuorinne, I., Munyao, M., Pellikka, P.K. and Heiskanen, J., 2022. Land cover map for multifunctional landscapes of Taita Taveta County, Kenya, based on Sentinel-1 radar, Sentinel-2 optical, and topoclimatic data. Data, 7(3): 36.  https://doi.org/10.3390/data7030036 
Ahangarha, M, Saadat Seresht, M, Shahhoseini, R, Seyyedi, S.T., 2020. Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images. Journal of Geomatics Science and Technology, 10 (2): 79-89 (In Persian)Amani, M., Ghorbanian, A., Ahmadi, S.A., Kakooei, M., Moghimi, A., Mirmazloumi, S.M., Moghaddam, S.H.A., Mahdavi, S., Ghahremanloo, M., Parsian, S. and Wu, Q., 2020. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052Amani, M., Salehi, B., Mahdavi, S., Brisco, B., 2018. Spectral analysis of wetlands using multi-source optical satellite imagery. ISPRS J. Photogramm. Remote Sens. 144: 19-36. https://doi.org/10.1016/j.isprsjprs.2018.07.005 Awad, M.M., Alawar, B. and Jbeily, R., 2019. A new crop spectral signatures database interactive tool (CSSIT). Data, 4(2): 77. https://doi.org/10.3390/data4020077Deiss, L., Margenot, A.J., Culman, S.W. and Demyan, M.S., 2020. Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma, 365: 114227. https://doi.org/10.1016/j.geoderma.2020.114227GaoC., 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment. 58(3):257-66. https://doi.org/10.1016/S00344257 (96)00067-3 
Ghayour, L.; Neshat, A.; Paryani, S.; Shahabi, H.; Shirzadi, A.; Chen,W.; Al-Ansari, N.; Geertsema, M.; Pourmehdi Amiri, M.; Gholamnia, M., 2021. Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sens, 13, 1349.  https://doi.org/10.3390/rs13071349 
Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A. and Hasanlou, M., 2020. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 276-288. https://doi.org/10.1016/j.isprsjprs.2020.07.013Gurung, R.B., Breidt, F.J., Dutin, A. and Ogle, S.M., 2009. Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications. Remote Sensing of Environment, 113(10): 2186-2193. https://doi.org/10.1016/j.rse.2009.05.015Holtgrave, A.K., Röder, N., Ackermann, A., Erasmi, S. and Kleinschmit, B., 2020. Comparing Sentinel-1 and-2 data and indices for agricultural land use monitoring. Remote Sensing, 12(18): 2919. https://doi.org/10.3390/rs12182919Hu B, Xu Y, Huang X, Cheng Q, Ding Q, Bai L, Li Y., 2021. Improving urban land cover classification with combined use of sentinel-2 and sentinel-1 imagery. ISPRS International Journal of Geo-Information, 10(8):533. https://doi.org/10.3390/ijgi10080533Huang, S., Tang, L., Hupy, J.P., Wang, Y. and Shao, G., 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1): 1-6. https://doi.org/10.1007/s11676-020-01155-1 
Immitzer, M., Vuolo, F., Atzberger, C., 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Remote Sens, 8: 166. https://doi.org/10.3390/rs8030166Kasaei zadegan, A.S., 2014. Drought analysis of Alborz province with SPI method, 1th international conference of Geographic science, Abadeh (In Persian).Kharazmi, R., Panidi, E.A. and Karkon, V.M., 2016. Assessment of dry land ecosystem dynamics based on time series of satellite images. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(5): 214-223 (In Russian).Kharazmi, R., Tavili, A., Rahdari, M.R., Chaban, L., Panidi, E. and Rodrigo-Comino, J., 2018. Monitoring and assessment of seasonal land cover changes using remote sensing: A 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environmental monitoring and assessment, 190: 1-23. https://doi.org/10.1007/s10661-018-6726-zKoskinen, J., Leinonen, U., Vollrath, A., Ortmann, A., Lindquist, E., d'Annunzio, R., Pekkarinen, A., Käyhkö, N., 2019. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 148:63-74. https://doi.org/10.1016/j.isprsjprs.2018.12.011Laban, N., Abdellatif, B., Ebeid, H.M., Shedeed, H.A. and Tolba, M.F., 2019. Machine learning for enhancement land cover and crop types classification. Machine learning paradigms: theory and application, 71-87. https://doi.org/10.1007/978-3-030-02357-7_4Madasa, A., Orimoloye, I.R. and Ololade, O.O., 2021. Application of geospatial indices for mapping land cover/use change detection in a mining area. Journal of African Earth Sciences, 175: 104108. https://doi.org/10.1016/j.jafrearsci.2021.104108Mohammad esmaeil,Z., 2010. Monitoring land use\ land cover changes in karaj by applying remote sensing. Iranian journal of soil research (formerly soil and water sciences), 24(1): 81-88 (In Persian).Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N. and Reiche, J., 2021. Sentinel-1 SAR backscatter analysis ready data preparation in google earth engine. Remote Sensing, 13(10): 1954. https://doi.org/10.3390/rs13101954Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S.M.M. and Borz, S.A., 2022. Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods. Remote Sensing, 14(9): 1977. https://doi.org/10.3390/rs14091977Navidi, M.N., Asadi Rahmani, H., Chatrenour, M., Kharazmi, R., Jamshidi, M., Ziaee Javid, A., MohamadEsmaeil, Z., ebrahimi meymand, F, 2023. Changes in Agricultural Land Use as a Threat to Food Security, Land Management Journal, 11(2): 229-248 (In Persian).Piao, Y.; Jeong, S.; Park, S.; Lee, D., 2021. Analysis of Land Use and Land Cover Change Using Time-Series Data and Random Forest in North Korea. Remote Sensing, 13, 3501. https://doi.org/10.3390/rs13173501Polykretis, C., Grillakis, M.G., Alexakis, D.D., 2020. Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece. Remote Sensing, 12(2): 319. https://doi.org/10.3390/rs12020319Rufin, P., Frantz, D., Ernst, S., Rabe, A., Griffiths, P., Özdo˘gan, M., Hostert, P., 2019. Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning. Remote Sensing, 11, 232. https://doi.org/10.3390/rs11030232Sang, X., Guo, Q., Wu, X., Xie, T., He, C., Zang, J., Qiao, Y., Wu, H. and Li, Y., 2021. The effect of DEM on the land use/cover classification accuracy of landsat OLI images. Journal of the Indian Society of Remote Sensing, 49: 1507-1518. https://doi.org/10.1007/s12524-021-01318-5 
Schulz, D., Yin, H., Tischbein, B., Verleysdonk, S., Adamou, R. and Kumar, N., 2021. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS Journal of Photogrammetry and Remote Sensing, 178, pp.97-111. https://doi.org/10.1016/j.isprsjprs.2021.06.005Shafizadeh-Moghadam, H., Minaei, F., Talebi-khiyavi, H., Xu, T. and Homaee, M., 2022. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena, 212: 106077. https://doi.org/10.1016/j.catena.2022.106077 
Shojaeeian, A., Mokhtari Chelche, S., Keshtkar, L., Soleymani rad, E., 2015. Comparing the Performance of Parametric and NonparametricMethods in Land Cover Classification using Landsat-8 Satellite Images (Case study: A part of Dezful city), Scientific- Research Quarterly of Geographical Data (SEPEHR), 24(93): 53-64 (In Persian).Solórzano, J.V., Mas, J.F., Gao, Y. and Gallardo-Cruz, J.A., 2021. Land use land cover classification with U-net: Advantages of combining sentinel-1 and sentinel-2 imagery. Remote Sensing, 13(18): 3600. https://doi.org/10.3390/rs13183600Teluguntla, P., Thenkabail, P.S., Oliphant, A., Xiong, J., Gumma, M.K., Congalton, R.G., Yadav, K., Huete, A., 2018. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 144: 325–340. https://doi.org/10.1016/j.isprsjprs.2018.07.017 
Thanh Noi, P., Kappas, M., 2017. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for and Cover Classification Using Sentinel-2 Imagery. Sensors, 18, 18. https://doi.org/10.3390/s18010018Valero-Carreras, D., Aparicio, J. and Guerrero, N.M., 2021. Support vector frontiers: A new approach for estimating production functions through support vector machines. Omega, 104: 102490. https://doi.org/10.1016/j.omega.2021.102490Yang, J., Xu, J., Lv, Y., Zhou, C., Zhu, Y. and Cheng, W., 2023. Deep learning-based automated terrain classification using high-resolution DEM data. International Journal of Applied Earth Observation and Geoinformation, 118: 103249.  https://doi.org/10.1016/j.jag.2023.103249 
Zha, Y., Gao, J. and Ni, S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3): 583-594. https://doi.org/10.1080/01431160304987 |