Anvar, H. and sheikhloie, H., 2021. Synthesis and Evaluation of Physicochemical and Antimicrobial Properties of Bionanocomposites Based on Carboxymethylchitosan Biopolymer - Montmorillonite Nanoclay in the Presence of TiO₂ Nanoparticles. Journal of food science and technology, 18(112): 283-297. https://doi.org/ 10.52547/fsct.18.112.283
-Ashori, A.R., Shahreki, A. and Ismaeilimoghadam, S., 2019. Effects of cellulose nanocrystal addition on the properties of poly hydroxy butyrate-co-valerate (PHBV) films. Iranian Journal of Wood and Paper Industries, 10(1): 153-164. 20.1001.1.20089066. 1398.10.1.13.0
-Azizi Samir, M.A.S., Alloin, F. and Dufresne, A., 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2): 612-626. https://doi.org/10.1021/bm0493685
-Chen, L., Du, Y. Tian, Z. and Sun, L., 2005. Effect of the degree of deacetylation and the substitution of carboxymethyl chitosan on its aggregation behavior. Journal of Polymer Science Polymer Physics, 43: 296-305. https://doi.org/10.1002/polb.20212
-Cheng, S., Zhang, Y. Cha, R. Yang, J. and Jiang, X., 2016. Water soluble nanocrystalline cellulose films with highly transparent and oxygen barrier property. Nanoscale, 2: 1-6. https://doi.org/10.1039/c5nr07647a
-Farag, R.K. and Mohamed, R.R., 2013. Synthesis and Characterization of Carboxymethyl Chitosan Nanogels for Swelling Studies and Antimicrobial Activity. Molecules, 18(1): 190-203. https://doi.org/10.3390/molecules18010190
-Irimia-Vladu, M., 2014. Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43(2): 588-610. https://doi.org/10.1039/ c3cs60235d
-Krochta, J.M. and De Mulder-Johnston, C., 1997. Edible and Biodegradable Polymer Films: Challenges and Opportunities. Food Technology Chicago, 51: 61-74.
-Mashak, A., 2014. A Brief Overview on Biodegradable Polymers in Drug Delivery Systems. Polymerization, 4(3): 23-35.
-Missoum, K., Martoïa, F. Belgacem, M.N. and Bras, J., 2013. Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Industrial Crops and Products, 48: 98-105. https://doi.org/10.1016/j.indcrop.2013.04.013
-Noushirvani, N., Ghanbarzadeh, B. and Entezami, A.A., 2012. Comparison of Tensile, Permeability and Color Properties of Starch-based Bionanocomposites Containing Two Types of Fillers: Sodium Montmorilonite and Cellulose Nanocrystal. Iranian Journal of Polymer Science and Technology, 24(5): 391-402.
-Oromiahee, A. and Mirlohi, F.S., 2019. Preparation and Evaluation of Physical and Mechanical Properties of Nano Coating of Carboxymethyl Cellulose and Guar Gum and Nanoparticles of Zinc Oxide. Scientific Journal of Packaging science and art, 10(38): 6-17.
-Patale, R.L. and Patravale, V.B., 2011. O, N-carboxymethyl chitosan–zinc complex: A novel chitosan complex with enhanced antimicrobial activity. Carbohydrate Polymers, 85(1): 105-110. https://doi.org/10.1016/j.carbpol.2011.02.001
-Poorna, K.S.V., Singh, A. Rathore, A. and Kumar, A., 2016. Novel cross linked guar gum - g- poly (acrylate) porous superabsorbent hydrogels: Characterization and swelling behavior in different environments. Carbohydrate Polymers, 149: 175-185. https://doi.org/10.1016/j.carbpol.2016.04.077
-Rahmani, S., Mohammadi, Z. Amini, M. Isaei, E. Taheritarigh, S. Rafiee Tehrani, N. and Rafiee Tehrani, M., 2016. Methylated 4-N, N dimethyl aminobenzyl N, O carboxymethyl chitosanas a new chitosan derivative: synthesis, characterization, cytotoxicity, and antibacterial activity. Carbohydrate Polymers, 149: 131-139. https://doi.org/10.1016/ j.carbpol.2016.04.116
-Rezayati-Charani, P., Moradian, M.H. and Saadatnia, M.A., 2018. Sequence analysis using cellulose nanofibers, cationic starch and polyacrylamide in the paper tensile strength. journal of Wood and Forest Science and Technology, 25(3): 73-86.
-Sessini, V., Navarro-Baena, I. Arrieta, M.P. Dominici, F. Lopez, D. Torre, L. Kenny, J.M. Dubois, P. Raquez, J.M. and Peponi, L., 2018. Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 152: 126-138. https://doi.org/10.1016/j. polymdegradstab.2018.04.012
-Sodeifi, B., Nazarnezhad, N. and Sharifi, S.H., 2019. Investigation of resistance and optical properties of the papers treated with cellulose nanocrystals and zinc oxide nanoparticles. Iranian Journal of Wood and Paper Industries, 10(3): 407-415. 20.1001.1. 20089066.1398.10.3.8.9
-Sodeifi, B., Sharifi, S.H. and Nazarnezhad, N., 2023. Production and the investigation of cellulose nanocrystals properties obtained from cotton linter and their use as a reinforcing agent in polycaprolactone nanocomposite films. Iranian Journal of Wood and Paper Science Research, 38(3): 225-236. https://doi.org/10.22092/ijwpr.2023.360 955.1741
-Sodeifi, B., Sharifi, S.H. and Zabih zadeh, S.M., 2024. Investigating the resistance and optical properties of papers coated with Bio nanocomposite carboxymethyl chitosan/guar gum/nanocrystalline cellulose. Iranian Journal of Wood and Paper Industries, 15(2): 137-151. 10.22034/ijwp.2024. 2022214.1647
-Sorrentino, A., Gorrasi, G. and Vittoria, V., 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18: 84-95. https://doi.org/10.1016/ j.tifs.2006.09.004
-Suriyatem, R., Auras, R.A. and Rachtanapun, P., 2018. Improvement of mechanical properties and thermal stability of biodegradable rice starch-based films blended with carboxymethyl chitosan. Industrial Crops and Products, 122: 37-48. https://doi.org/ 10.1016/j.indcrop.2018.05.047
-Tatari, A.A. and Shekarian, A., 2014. The Importance of Cellulose Derivatives in the Production of Biodegradable Films for Food Packaging. Journal of Applied Science and Technology, 5(19): 22-31.
-Thanakkasaranee, S., Jantanasakulwong, K. Phimolsiripol, Y. Leksawasdi, N. Seesuriyachan, P. Chaiyaso, T. Jantrawut, P. Ruksiriwanich, W. Rose Sommano, S. Punyodom, W. Reungsang, A. Ngo, T.M.P. Thipchai, P. Tongdeesoontorn, W. and Rachtanapun, P., 2021. High Substitution Synthesis of Carboxymethyl Chitosan for Properties Improvement of Carboxymethyl Chitosan Films Depending on Particle Sizes. Molecules, 26(19): 1-16. https://doi.org/10.3390/molecules26196013
-Vaezi, Kh. and Asadpour, Gh., 2022. Effects of HCl Hydrolyzed Cellulose Nanocrystals from Waste Papers on the Hydroxypropyl Methylcellulose/ Cationic Starch Biofilms. Waste and Biomass Valorization, 13(4): 2035-2051. https://doi.org/ 10.1007/s12649-021-01651-3
-Xu, Q., Gao, Y. Qin, M. Wu, K. Fu, Y. and Zhao, J., 2013. Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp. International Journal of Biological Macromolecules, 60: 241-247. https://doi.org/10.1016/j.ijbiomac.2013.05.038
|