- Yigit N., Sevik H., Cetin M., Kaya N. Determination of the effect of drought stress on the seed germination in some plant species. In Water Stress in Plants. Rahman I.M.M., Ed. IntechOpen: London, UK. 2016; 43–62. DOI: 10.5772/63197
- Marthandan V., Geetha R., Kumutha K., Renganathan V.G., Karthikeyan A., Ramalingam J. Seed priming: A feasible strategy to enhance drought tolerance in crop plants. Int. J Mol Sci. 2020; 21:(21) 8258. doi: 10.3390/ijms21218258
- Iwaniuk P., Borusiewicz A., Lozowicka B. Fluazinam and its mix-tures induce diversified changes of crucial biochemical and antiox-idant profile in leafy vegetable. Sci. Hortic. 2022; 298: 110988. doi.org/10.1016/j.scienta.2022.110988.
- Gordillo-Bastidas E., Díaz-Rizzolo D.A., Roura E., Massanés T., Gomis R. Quinoa (Chenopodium quinoa Willd.), from nutritional value to potential health benefits: An integrative review. J Nutr Food Sci. 2016; 6: 497. doi:10.4172/2155-9600.1000497.
- Navruz-Varli S., Sanlier N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J Cereal Sci. 2016; (69): 371–376. Doi: 10.1016/j.jcs.2016.05.004
- Lechowska K., Kubala S., Wojtyla Ł., Nowaczyk G., Quinet M., Lutts S., Garnczarska M. New insight on water status in germinating Brassica napus seeds in relation to priming-improved germination. Int J Mol Sci. 2019; 20: 540. doi: 10.3390/ijms20030540.
- Aydin M., Hossein Pour A., Haliloglu K., Tosun M. Effect of putres-cine application and drought stress on germination of wheat (Triti-cum aestivum L.). Atatürk Univ J Agric Fac. 2015; 46: 1300–9036.
- Nimac A., Lazarevi´c B., Petek M., Vidak M., Šatovi´c Z., Ca-rovi´c-Stanko K. Effects of salinity and seed priming on germination of sea fennel (Crithmum maritimum L.). Agric Conspec Sci. 2018; 83: 81–185.
- Lutts S., Benincasa P., Wojtyla L., Kubala S., Pace R., Lechowska K., Quinet M., Garnczarska M. Seed priming: New comprehensive approaches for an old empirical technique. In New Challenges in Seed Biology-Basic and Translational Research. Driving Seed Technology; Araújo, S., Balestrazzi, A., Eds., IntechOpen: London, UK. 2016; 1–46. DOI: 10.5772/64420
- Reis S., Pavia I., Carvalho A., Moutinho-Pereira J., Correia C., Lima-Brito J. Seed priming with iron and zinc in bread wheat: ef-fects in germination, mitosis and grain yield. Protoplasma. 2018; 255(4): 1179-1194. Doi: 10.1007/s00709-018-1222-4.
- Singh S.P., Keller B., Gruissemm W., Bhullarm N.K. Rice NICOTI-ANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theor Appl Genet. 2017; 130: 283–292. DOI: 10.1007/s00122-016-2808-x
- Morrissey J., Guerinotm M.L. Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev. 2009; 109(10): 4553–4567. doi: 10.1021/cr900112r
- Marenco R.A., Lopes, N.F. Fisiologia Vegetal: Fotossíntese, respiração, relações hídricas e nutrição mineral, 3rd edn. Marenco RA, Lopes NF (eds), Publisher: Editora Universidade Federal de Viçosa. 2009; 267–297
- Laity J.H., Lee B.M., Wrightm P.E. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001; 11: 39– 46. DOI: 10.1016/s0959-440x(00)00167-6
- Hafeez B., Khanif Y.M., Saleem M. Role of zinc in plant nutrition – a review. Am. J. Exp Agric. 2013; 3: 374–391. DOI: 10.9734/AJEA/2013/2746
- Ma T., Duan X.H., Yang Y.Y., Yao J., Gao T.P. Zinc-alleviating effects on iron-induced phytotoxicity in roots of Triticum aestivum. Biol Plant. 2017; 61(4): 733–740. Doi:10.1007/s10535-017-0720-0
- Sheteiwy M.S., Guan Y., Cao D., Li J., Nawaz A., Hu Q., Hu W., Ning M., Hu J. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep. 2015; 5: 14278. Doi: 10.1038/srep14278
- Afzal M., Afzal A., Jones A., Armstrong D. A rapid method for the quantification of GSH and GSSG in biological samples. Methods Mol Biol. 2002; 186: 177–122. Doi:10.1385/1-59259-173-6:117
- Nawaz F., Ahmad R., Waraich E.A., Naeem M.S., Shabbir R.N. Nutrient uptake, physiological responses, and yield attributes of wheat (Triticum aestivum L.) exposed to early and late drought stress. J Plant Nutr. 2012; 35: 961–974. Doi: 10.1080/01904167.2012.663637
- Sharma A.D., Rathore S.V.S., Srinivasan K., Tyagi R.K. Comparison of various seed priming methods for seed germination, seedling vig-our and fruit yield in okra (Abelmoschus esculentus L. Moench). Sci Hortic. 2014; 165: 75–81. Doi: 10.1016/j.scienta.2013.10.044
- Sheteiwy M.S., Fu Y., Hu Q., Nawaz A., Guan Y., Li Z., Huang Y., Hu J. Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environ Sci Pollut Res. 2016; 23: 19989–20002. Doi: 10.1007/s11356-016-7170-7
- Abid M., Hakeem A., Shao Y., Liu Y., Zahoor R., Fan Y., Suyu J., Ata-Ul-Karim S.T., Tian Z., Jiang D., Snider J.L., Dai T. Seed os-mopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.) Environ Exp Bot. 2018; 145: 12–20. DOI:10.1016/J.ENVEXPBOT.2017.10.002
- Sarlach R.S., Sharma A., Bains N.S. Seed priming in wheat: effect on seed germination, yield parameters and grain yield. Progr Res. 2013; 8(1): 109–112.
- Soil testing methods – Global Soil Doctors Programme - A farmer-to-farmer training programme. 2020; Rome. Doi: 10.4060/ca2796en
- Telahigue D. C., Yahia L. B., Aljane F., Belhouchett K., Toumi L. Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa Willd.) under drought stress. Journal of Sci-entific Agriculture. 2017; 1: 222–232. Doi: 10.25081/jsa.2017.v1.67.
- Bourhim M.R., Cheto S., Qaddoury A., Hirich A., Ghoulam C. Chemical seed priming with zinc sulfate improves quinoa tolerance to salinity at germination stage. Environmental Sciences Proceed-ings. 2022; 16-23. Doi: 10.3390/environsciproc2022016023
- Razzaghi F., Ahmadi S.H., Jacobsen S.-E., Jensen C.R., Andersen M.N. Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 2012; 198: 173–184. Doi: 10.1111/j.1439-037X.2011.00496.x
- Smart, R.E. and Bingham, G.E. Rapid Estimates of Relative Water Content. Plant Physiology, 1974, 53, 258-260. Doi: 10.1104/pp.53.2.258 .
- Gómez M.B., Castro P.A., Mignone C., Bertero H.D., Gómez M.B., Castro P.A., Mignone C., Bertero H.D. Can yield potential be in-creased by manipulation of reproductive partitioning in quinoa (Chenopodium quinoa)? Evidence from gibberellic acid synthesis inhibition using paclobutrazol. Funct. Plant Biol. 2011; 38: 420–430. Doi: 10.1071/FP10168
- Wattanakulpakin P., Photchanachai S., Ratanakhanokchai K., Kyu K.L., Ritthichai P., Miyagawa S. Hydropriming effects on carbohy-drate metabolism, antioxidant enzyme activity and seed vigor of maize (Zea mays L.) Afr J Biotechnol. 2012; 11: 3537–3547. Doi: 10.5897/AJB11.3020
- Bates L.S., Waldren R.P., Teare I. Rapid determination of free proline for water-stress studies. Plant Soil. 1973; 39: 205–207. Doi: 10.1007/BF00018060
- Tavano OL., Miguel Amistá M., Del Ciello G., Martini Rodrigues M., Bono Nishida A., Alves Valadares L., Moreira Siqueira B., Apare-cida da Silva Gomes R., Túlio Parolini M. da Silva Junior M. Isola-tion and evaluation of quinoa (Chenopodium quinoa Willd.) protein fractions. A nutritional and bio-functional approach to the globulin fraction, Current Research in Food Science. 2022; 5: 1028-1037. Doi: 10.1016/j.crfs.2022.06.006.
- Mohsin A.U., Ahmad A.U.H., Farooq M., Ullah S. Influence of zinc application through seed treatment and foliar spray on growth, productivity and grain quality of hybrid maize. J Anim Plant Sci. 2014; 24(5): 1494–1503
- Fallah S., Malekzadeh S., Pessarakli M. Seed priming improves seedling emergence and reduces oxidative stress in Nigella sativa under soil moisture stress. J Plant Nutr. 2018; 41(1): 29–40. Doi: 10.1080/01904167.2017.1381719
- Hinojosa L., González J.A., Barrios-Masias F.H., Fuentes F., Murphy K.M. Quinoa abiotic stress responses: A review. Plants. 2018; 7: 106-112. Doi: 10.3390/plants7040106
- Razzaghi F., Ahmadi S.H., Adolf V.I., Jensen C.R., Jacobsen S.-E., Andersen M.N. Water relations and transpiration of quinoa (Che-nopodium quinoa Willd.) under salinity and soil drying. J. Agron. Crop Sci. 2011; 197: 348–360. Doi: 10.1111/j.1439-037X.2011.00473.x
- Hinojosa L., Sanad M.N.M.E., Jarvis D.E., Steel P., Murphy K., Smertenko A. Impact of heat and drought stress on peroxisome pro-liferation in quinoa. Plant J. 2019; 99: 1144–1158. DOI: 10.1111/tpj.14411
- Gómez M.B., Castro P.A., Mignone C., Bertero H.D., Gómez M.B., Castro P.A., Mignone C., Bertero H.D. Can yield potential be in-creased by manipulation of reproductive partitioning in quinoa (Chenopodium quinoa)? Evidence from gibberellic acid synthesis inhibition using paclobutrazol. Funct. Plant Biol. 2011; 38: 420–430. Doi: 10.1071/FP10168
- Kumari A., Parida A.K. Metabolomics and network analysis reveal the potential metabolites and biological pathways involved in salin-ity tolerance of the halophyte Salvadora persica. Environ. Exp. Bot. 2018; 148: 85–99. Doi: 10.1016/j.envexpbot.2017.12.021
- Kobraei S., Etminan A., Mohammadi R., Kobraee S. Effects of drought stress on yield and yield components of soybean. Anals Bi-ol. Res. 2011; 2: 504–509.
- Garrido M., Silva P., Silva H., Muñoz R., Baginsky C., Acevedo E. Evaluación del rendimiento de nueve genotipos de quinua (Cheno-podium quinoa Willd.) j bajo diferentes disponibilidades hídricas en ambiente mediterráneo. Idesia. 2013; 31: 69–76. Doi: 10.4067/S0718-34292013000200010
- Geerts S., Raes D., Garcia M., Mendoza J., Huanca R. Crop water use indicators to quantify the flexible phenology of quinoa (Che-nopodium quinoa Willd.) in response to drought stress. Field Crop. Res. 2008; 108: 150–156. Doi: 10.1016/j.fcr.2008.04.008
- Spehar C.R., Santos R.L.d.B. Agronomic performance of quinoa selected in the Brazilian Savannah. Pesqui. Agropecu. Bras. 2005; 40: 609–612. Doi: 10.1590/S0100-204X2005000600012
- Mignone C., Bertero H. Identificación del período crítico de deter-minación del rendimiento en quínoas de nivel del mar. In Proceed-ings of the Congreso Internacional de la Quinua, Iquique, Chile. 2007; 23–26.
- Yang A., Akhtar S., Amjad M., Iqbal S., Jacobsen S.E. Growth and physiological responses of quinoa to drought and temperature stress. J. Agron. Crop Sci. 2016; 202: 445–453. Doi: 10.1111/jac.12167
- Raza A., Charagh S., Sadaqat N., Jin W. Arabidopsis thaliana: Model plant for the study of abiotic stress responses. In The Plant Family Brassicaceae; Springer: Singapore. 2020; 129–180. Doi: 10.1007/978-981-15-6345-4_3
- Ahmad P., Ahanger M.A., Alyemeni M.N., Wijaya L., Alam P., Ashraf M. Mitigation of sodium chloride toxicity in Solanum lyco-persicum L. by supplementation of jasmonic acid and nitric oxide. J. Plant. Interact. 2018; 13: 64–72. Doi: 10.1080/17429145.2017.1420830
- Liu J., Gao H., Zheng Q., Wang C., Wang X., Wang Q. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion ho-meostasis of salt-stressed canola. Plant. Biol. 2013; 16: 440–450. Doi: 10.1111/plb.12052
- Abbas G., Amjad M., Saqib M., Murtaza B., Asif N.M., Shabbir A. Soil sodicity is more detrimental than salinity for quinoa (Chenopo-dium quinoa Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. J. Agron. Crop Sci. 2021; 207: 59–73. Doi: 10.1111/jac.12451
- Abbas G., Abrar M.M., Naeem M.A., Siddiqui M.H., Ali H.M., Li Y. Biochar increases salt tolerance and grain yield of quinoa on sa-line-sodic soil: Multivariate comparison of physiological and oxida-tive stress attributes. J. Soils Sediments. 2022; 22: 1446–1459. Doi: 10.1007/s11368-022-03159-2
- Iftikhar A., Abbas G., Saqib M., Shabbir A., Amjad M., Shahid M., Qaisrani S.A. Salinity modulates lead (Pb) tolerance and phytore-mediation potential of quinoa: A multivariate comparison of physi-ological and biochemical attributes. Environ. Geochem. Health. 2022; 44: 257–272. Doi: 10.1007/s10653-021-00937-8
- Miranda-Apodaca J., Yoldi-Achalandabaso A., Aguirresarobe A., del Canto A., Pérez-López U. Similarities and differences between the responses to osmotic and ionic stress in quinoa from a water use perspective. Agric. Water Manag. 2018; 203: 344–352. Doi: 10.1016/j.agwat.2018.03.026
- Iqbal H., Yaning C. Redox priming could be an appropriate tech-nique to minimize droughtinduced adversities in quinoa. Front. Plant Sci. 2024; 15: 1253677. doi: 10.3389/fpls.2024.1253677
- Fang Y., Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015; 72: 673–689. DOI: 10.1007/s00018-014-1767-0
- González J.A., Gallardo M., Hilal M.B., Rosa M.D., Prado F.E. Physiological responses of quinoa (Chenopodium quinoa) to drought and waterlogging stresses: Dry matter partitioning. Bot. Stud. 2009; 50: 35–42.
- Sadak M.S., El-Bassiouny H.M.S., Dawood M.G. Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bull. Natl. Res. Cent. 2019; 43: 5-14. Doi: 10.1186/s42269-018-0039-9
- Elzeiny H.A., Abou L.B., Gaballah M.S., Khalil S. Anti-transpirant application to sesame plant for salinity stress augmentation. Res. J. Agric. Biol. Sci. 2007; 3: 950–959.
- Farooq M., Hussain M., Wakeel A., Siddique K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015; 35: 461–481. Doi: 10.1007/s13593-015-0287-0
|