| 
		
Ahiaga-Dagbui, D. D., and Smith, S. D. 2012. Neural networks for modelling the final target cost of water projects.Ahmadaali, K., Liaghat, A., Heydari, N., and Bozorg-Haddad, O. 2013. Application of artificial neural network and adaptive neural-based fuzzy inference system techniques in estimating of virtual water. International Journal of Computer Application, 76: 12-19.Alshahethi, A. A. A., and Radhika, K. L. 2018. Estimating the Final Cost of Construction Project Using Neural Networks: A Case of Yemen Construction Projects. International Journal for Research in Applied Science & Engineering Technology, 6(11): 2141-2151.Altarabichi, M. G., Nowaczyk, S., Pashami, S., and Mashhadi, P. S. 2023. Fast Genetic Algorithm for feature selection—A qualitative approximation approach. Expert Systems with Applications, 211: 118528.Alweshah, M. 2021. Solving feature selection problems by combining mutation and crossover operations with the monarch butterfly optimization algorithm. Applied Intelligence, 51(6): 4058-4081.Arora, S., and Mishra, N. 2017. Software cost estimation using single layer artificial neural network. International Journal of Advanced Engineering Research and Science, 4(9): 237250.Arora, S., and Mishra, N. 2018. Software cost estimation using artificial neural network. In Soft Computing: Theories and Applications (pp. 51-58). Springer, Singapore.Awad, M., and Khanna, R. 2015. Support vector regression. In efficient learning machines (pp. 67-80). Apress, Berkeley, CA.Babaei, M., Rashidi-baqhi, A., and Rashidi, M. 2022. Estimating Project Cost under Uncertainty Using Universal Generating Function Method. Journal of Construction Engineering and Management, 148(2): 04021194.Chandanshive, V., and Kambekar, A. R. 2019. Estimation of building construction cost using artificial neural networks. Journal of Soft Computing in Civil Engineering, 3(1): 91-107.Chandrashekar, G., and Sahin, F. 2014. A survey on feature selection methods. Computers & Electrical Engineering, 40(1): 16-28.Cheng, M. Y., Tsai, H. C., and Sudjono, E. 2010. Conceptual cost estimates using evolutionary fuzzy hybrid neural network for projects in construction industry. Expert Systems with Applications, 37(6): 4224-4231.Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine learning, 20(3): 273-297.Drenthe, N. T., Zandbergen, B. T. C., Curran, R., and Van Pelt, M. O. 2019. Cost estimating of commercial smallsat launch vehicles. Acta Astronautica, 155: 160-169.Elfaki, A. O., Alatawi, S., and Abushandi, E. 2014. Using intelligent techniques in construction project cost estimation: 10-year survey. Advances in Civil Engineering, 2014: 1-11.Elhag, T. M. S., and Boussabaine, A. H. 1998. An artificial neural system for cost estimation of construction projects. In 14th Annual ARCOM Conference (Vol. 1, pp. 219-226). University of Reading: Association of Researchers in Construction Management.Ghaddar, B., and Naoum-Sawaya, J. 2018. High dimensional data classification and feature selection using support vector machines. European Journal of Operational Research, 265(3): 993-1004.Ghaemi, M., and Feizi-Derakhshi, M. R. 2016. Feature selection using forest optimization algorithm. Pattern Recognition, 60: 121-129.Gransberg, D. D., and Rueda, J. A. 2020. Construction equipment management for engineers, estimators, and owners. CRC Press.Kashan, A. H. 2014. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Applied Soft Computing, 16: 171-200.Kiani, A., and Shaker, M. 2022. Evaluating the Effectiveness of Pressurized Irrigation Systems in Iran. Water Management in Agriculture, 8(2): 167-182. (In Persian)Kim, G. H., Shin, J. M., Kim, S., and Shin, Y. 2013. Comparison of school building construction costs estimation methods using regression analysis, neural network, and support vector machine. Journal of Building Construction and Planning Research, 1(1): 1-7.Lester, E. I. A. 2017. Estimating. In: Project management, planning and control. The Netherlands: Elsevier, 61–65.Liu, J., Lin, Y., Lin, M., Wu, S., and Zhang, J. 2017. Feature selection based on quality of information. Neurocomputing, 225: 11-22.Masoudi-Sobhanzadeh, Y., and Motieghader, H. 2016. World Competitive Contests (WCC) algorithm: A novel intelligent optimization algorithm for biological and non-biological problems. Informatics in Medicine Unlocked, 3: 15-28.Masoudi-Sobhanzadeh, Y., Motieghader, H., & Masoudi-Nejad, A. 2019. FeatureSelect: a software for feature selection based on machine learning approaches. BMC Bioinformatics, 20(1): 1-17.Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., and Voordijk, H. 2022. An artificial neural network approach for cost estimation of engineering services. International Journal of Construction Management, 22(7): 1274-1287.Metin, S. K. 2018. Feature selection in multiword expression recognition. Expert Systems with Applications, 92: 106-123.Mevellec, P. 2021. Cost systems: A new approach. Academia Letters, 2.Miao, J., and Niu, L. 2016. A survey on feature selection. Procedia Computer Science, 91: 919-926.Nalbandan, R. B., Delavar, M., Abbasi, H., and Zaghiyan, M. R. 2023. Model-based water footprint accounting framework to evaluate new water management policies. Journal of Cleaner Production, 382: 135220.Norvig, P. R., and Intelligence, S. A. 2002. A modern approach. Prentice Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage. Knowledge-Based Systems, 90: 33-48.Omotayo, T., Bankole, A., and Olubunmi Olanipekun, A. 2020. An artificial neural network approach to predicting most applicable post-contract cost controlling techniques in construction projects. Applied Sciences, 10(15): 5171-5195.Panday, D., de Amorim, R. C., and Lane, P. 2018. Feature weighting as a tool for unsupervised feature selection. Information processing letters, 129: 44-52.Pazoki, M., Yadav, A., and Abdelaziz, A. Y. 2020. Pattern-recognition methods for decision-making in protection of transmission lines. In Decision making applications in modern power systems (pp. 441-472). Academic Press.Pourgholam-Amiji, M., Ahmadaali, K., and Liaghat, A. 2021a. Sensitivity Analysis of Parameters Affecting the Early Cost of Drip Irrigation Systems Using Meta-Heuristic Algorithms. Iranian Journal of Irrigation & Drainage, 15(4): 737-756. (In Persian)Pourgholam-Amiji, M., Liaghat, A., and Ahmadaali, K. 2021b. Early Stage Cost Modeling of Drip Irrigation Systems. Irrigation and Drainage Structures Engineering Research, 22(82): 1-22. (In Persian)Rahmaninia, M., and Moradi, P. 2018. OSFSMI: online stream feature selection method based on mutual information. Applied Soft Computing, 68: 733-746.Rastegar, R., Rahmati, M., and Meybodi, M. R. 2005. A clustering algorithm using cellular learning automata based evolutionary algorithm. In Adaptive and Natural Computing Algorithms (pp. 144-150). Springer, Vienna.Roxas, C. L. C., and Ongpeng, J. M. C. 2014. An artificial neural network approach to structural cost estimation of building projects in the Philippines.  DLSU Res. Congr.Schubert, A. L., Hagemann, D., Voss, A., and Bergmann, K. 2017. Evaluating the model fit of diffusion models with the root mean square error of approximation. Journal of Mathematical Psychology, 77: 29-45.Sharma, A., Jain, A., Gupta, P., and Chowdary, V. 2020. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9: 4843-4873.Sheikhpour, R., Sarram, M. A., Gharaghani, S., and Chahooki, M. A. Z. 2017. A survey on semi-supervised feature selection methods. Pattern Recognition, 64: 141-158.Solorio-Fernández, S., Carrasco-Ochoa, J. A., and Martínez-Trinidad, J. F. (2020): A review of unsupervised feature selection methods. Artificial Intelligence Review, 53(2): 907-948.Talukdar, S., Naikoo, M. W., Mallick, J., Praveen, B., Sharma, P., Islam, A. R. M. T. ... and Rahman, A. 2022. Coupling geographic information system integrated fuzzy logic-analytical hierarchy process with global and machine learning based sensitivity analysis for agricultural suitability mapping. Agricultural Systems, 196: 103343.Teksin, S., Azginoglu, N., and Akansu, S. O. 2022. Structure estimation of vertical axis wind turbine using artificial neural network. Alexandria Engineering Journal, 61(1): 305-314.Thakkar, A., and Lohiya, R. 2023. Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System. Information Fusion, 90: 353-363.Venkatachalam, A. R. 1993. Software cost estimation using artificial neural networks. In Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan) (Vol. 1, pp. 987-990). IEEE.Waliulu, Y. E. P. R., and Adi, T. J. W. 2022. A system dynamic thinking for modeling infrastructure project duration acceleration. Procedia Computer Science, 197: 420-427.Winston, P. H. 1992. Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc.Yadav, R., Vyas, M., Vyas, V., and Agrawal, S. 2016. Cost estimation model (CEM) for residential building using artificial neural network. International Journal of Engineering Research & Technology (IJERT), 5(1): 430-432. |