- Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL. Ageing and neurodegenerative diseases. Ageing Res Rev. 2010;9(1):S36-46.
- Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, et al. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci. 2019;12:132-.
- Rodríguez-Rodero S, Fernández-Morera JL, Menéndez-Torre E, Calvanese V, Fernández AF, Fraga MF. Aging genetics and aging. Aging Dis. 2011;2(3):186-95.
- Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72.
- Knickman JR, Snell EK. The 2030 problem: caring for aging baby boomers. Health Serv Res. 2002;37(4):849-84.
- United Nations DoEaSA, Population Division. World Population Aging 2019: Highlights. New York: United Nations; 2019.
- Cox C. The Sustainable Development Goals and Aging: Implications for Social Work. J Hum Rights Soc Work. 2020;5(1):39-47.
- Cristea M, Noja GG, Stefea P, Sala AL. The Impact of Population Aging and Public Health Support on EU Labor Markets. Int J Environ Res Public Health. 2020;17(4):1439.
- Froestl W, Pfeifer A, Muhs A. Cognitive Enhancers (Nootropics). Part 3: Drugs Interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs. J Alzheimers Dis. 2013;34:1-114.
- McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine's effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294-312.
- Cappelletti S, Piacentino D, Sani G, Aromatario M. Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol. 2015;13(1):71-88.
- Cao C, Cirrito JR, Lin X, Wang L, Verges DK, Dickson A, et al. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice. J Alzheimers Dis. 2009;17(3):681-97.
- Eskelinen MH, Kivipelto M. Caffeine as a protective factor in dementia and Alzheimer's disease. J Alzheimers Dis. 2010;20(1): 167-74.
- Van Dam D, De Deyn PP. Drug discovery in dementia: the role of rodent models. Nat Rev Drug Discov. 2006;5(11):956-70.
- Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci. 2014;109(2):73-86.
- Van Dam D, De Deyn PP. Animal models in the drug discovery pipeline for Alzheimer's disease. Br J Pharmacol. 2011;164(4):1285-300.
- Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63(2):411-36.
- Nainu F, Salim E, Asri RM, Hori A, Kuraishi T. Neurodegenerative disorders and sterile inflammation: lessons from a Drosophila model. J Biochem. 2019;166(3):213-21.
- Nainu F, Asri RM, Arsyad A, Manggau MA, Amir MN. In vivo antibacterial activity of green algae Ulva reticulata against Staphylococcus aureus in Drosophila model of infection. Pharmacogn J. 2018;10(5):993-7.
- Ali YO, Escala W, Ruan K, Zhai RG. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp. 2011(49):2504.
- Ma WW, Tao Y, Wang YY, Peng IF. Effects of Gardenia jasminoides extracts on cognition and innate immune response in an adult Drosophila model of Alzheimer's disease. Chin J Nat Med. 2017;15(12):899-904.
- Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, Zou S. Aging studies in Drosophila melanogaster. Methods Mol Biol. 2013;1048:77-93.
- López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217.
- Paredes Juan C, Welchman David P, Poidevin M, Lemaitre B. Negative Regulation by Amidase PGRPs Shapes the Drosophila Antibacterial Response and Protects the Fly from Innocuous Infection. Immunity. 2011;35(5):770-9.
- Kounatidis I, Chtarbanova S, Cao Y, Hayne M, Jayanth D, Ganetzky B, et al. NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Rep. 2017;19(4):836-48.
- Liu R, Gang L, Shen X, Xu H, Wu F, Sheng L. Binding Characteristics and Superimposed Antioxidant Properties of Caffeine Combined with Superoxide Dismutase. ACS Omega. 2019;4(17):17417-24.
- Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915-28.
- Liling S, Roska TP, Arfiansyah R, Maryam F, Nainu F. Pharmacological Effect of Muntingia calabura Leaves on the Expression of sod1 and sod2 in Drosophila. Biointerface Res Appl Chem. 2021;11(5):12985-92.
- Dimayuga FO, Wang C, Clark JM, Dimayuga ER, Dimayuga VM, Bruce-Keller AJ. SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J Neuroimmunol. 2007;182(1-2):89-99.
- Orlans J, Vincent-Monegat C, Rahioui I, Sivignon C, Butryn A, Soulère L, et al. PGRP-LB: An Inside View into the Mechanism of the Amidase Reaction. Int J Mol Sci. 2021;22(9):4957.
- Kurata S. Peptidoglycan recognition proteins in Drosophila immunity. Dev Comp Immunol. 2014;42(1):36-41.
- Zaidman-Rémy A, Hervé M, Poidevin M, Pili-Floury S, Kim M-S, Blanot D, et al. The Drosophila Amidase PGRP-LB Modulates the Immune Response to Bacterial Infection. Immunity. 2006;24(4):463-73.
- Garschall K, Flatt T. The interplay between immunity and aging in Drosophila. F1000Res. 2018;7:160-.
- Murman DL. The Impact of Age on Cognition. Semin Hear. 2015;36(3):111-21.
- Glisky EL. Changes in Cognitive Function in Human Aging. In: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Boca Raton (FL): CRC Press/Taylor & Francis; 2007.
- Mackay DF, Russell ER, Stewart K, MacLean JA, Pell JP, Stewart W. Neurodegenerative Disease Mortality among Former Professional Soccer Players. N Engl J Med. 2019;381(19):1801-8.
- Luo Z, Lv H, Chen Y, Xu X, Liu K, Li X, et al. Years of Life Lost Due to Premature Death and Their Trends in People With Selected Neurological Disorders in Shanghai, China, 1995–2018: A Population-Based Study. Front Neurol. 2021;12(207).
- Tarozzi A. Oxidative Stress in Neurodegenerative Diseases: From Preclinical Studies to Clinical Applications. J Clin Med. 2020;9(4):1223.
- Endesfelder S, Strauß E, Scheuer T, Schmitz T, Bührer C. Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir Res. 2019;20(1):88.
- Swinbourne AM, Kind KL, Flinn T, Kleemann DO, van Wettere W. Caffeine: A potential strategy to improve survival of neonatal pigs and sheep. Anim Reprod Sci. 2021;226:106700.
- Bridi JC, Barros AGdA, Sampaio LR, Ferreira JCD, Antunes Soares FA, Romano-Silva MA. Lifespan Extension Induced by Caffeine in Caenorhabditis elegans is Partially Dependent on Adenosine Signaling. Front Aging Neurosci. 2015;7(220).
- Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M. Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan. 2012;1:9-.
- Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65-74.
- Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287-93.
- Le Bourg É. Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett. 2001;498(2):183-6.
- Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010;5(1):51-66.
- Almosawi S, Baksh H, Qareeballa A, Falamarzi F, Alsaleh B, Alrabaani M, et al. Acute Administration of Caffeine: The Effect on Motor Coordination, Higher Brain Cognitive Functions, and the Social Behavior of BLC57 Mice. Behav Sci. 2018;8(8):65.
|