Sublethal effects of pyriproxyfen on some biological and biochemical properties of elm leaf beetle, *Xanthogaleruca luteola* (Col.: Chrysomelidae)

B. Valizadeh and J. Jalali Sendi*

Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran. *Corresponding author, E-mail: jialali@guilan.ac.ir

Abstract

The lethal and sublethal effects of pyriproxyfen (a juvenile hormone analogue) were investigated on feeding deterrence, growth and larval weight as well as enzymatic and non-enzymatic activities of the third instar larvae of elm leaf beetle, X anthogaleruca luteola Müller. The LC₃₀ and LC₅₀ values were estimated to be 133 and 343 ppm per larvae after 72 hours, respectively. Due to the treatment with 133 and 343 ppm of pyriproxyfen, feeding deterrence and prolongation in larval duration were observed. Also, the amounts of total protein, glucose, glycogen, urea, acid phosphatase and α -amylase activities were significantly decreased in the treated specimens compared with the controls. On the other hand, alanine aminotransferase activity and cholesterol levels were increased in the specimens 72 hours after the treatment compared with the controls. There were significant differences in the amount of uric acid and the activity of alkaline phosphatase, glutathione S-transferase and esterases compared with the controls. Present results showed that pyriproxyfen caused some biological and physiological discrepancies in the survived insects after treating with LC₅₀ concentration of the insecticide which indicates changes in the metabolism of these compounds. Hence, it seems that pyriproxyfen has the potential to be used as a biorational insecticide in the integrated pest management (IPM) program for X. luteolla.

Key words: Xanthogaleruca luteola, pyriproxyfen, sublethal effects, enzymatic and non-enzymatic changes, juvenile hormone mimic

چکیده

اثـــرات زیر کشــندگی پـــریپرو کســیفـــن روی بعضــی خصوصــیات بیولـــوژیکی و بیوشــیمیایی سوســک بـــر گـخــوار نـــارون، (Xanthogaleruca luteola (Col.: Chrysomelidae

بیتا والیزاده و جلال جلالی سندی

اثرات کشندگی و زیرکشندگی پیریپروکسیفن (شبههورمون جوانی) روی مرگ و میر، رشد و بازدارندگی تغذیه و همچنین فعالیتهای آنزیمی و مقادیر ماکرومولکولهای لارو سن سوم سوسک برگخوار نارون، الاون، الاوما لارو سن سوم، پس از ۷۲ ساعت تیمار، بهترتیب ۳۶۳ و ۱۲۳ پیپیام محاسبه شد. لاروهای تیمارشده شد. مقادیر LC50 وی لارو سن سوم، پس از ۷۲ ساعت تیمار، بهترتیب ۳۶۳ و ۱۲۳ پیپیام محاسبه شد. لاروهای تیمارشده با غلظتهای LC50 و میر بالا، افزایش طول دورهی لاروی، عدم ظهور حشرهی کامل، کاهش وزن و دورکنندگی تغذیه از خود نشان دادند. همچنین، مقدار پروتئین کل، گلوکز، گلیگوژن، اوره، فعالیت آنزیمهای اسید فسفاتاز و آلفاآمیلاز تحت تیمار هر دو غلظت در مقایسه با شاهد بهطور معنی داری کاهش یافت. از طرف دیگر، ۷۲ ساعت پس از تیمار، فعالیت آلانین آمینو ترانسفراز و مقدار کلسترول افزایش معنی داری نسبت به شاهد نشان داد. میزان اسیداوریک و فعالیت آنزیمهای آلکالین فسفاتاز، گلوتاتیون اس- ترانسفراز و استراز در لاروهای تیمارشده تفاوت معنی داری با شاهد نشان دادند. نتایج نشان داد که پیریپروکسیفن علاوه بر کشتن حشرات در غلظت در میات است. از ایرو، به نظر می رسد که پیریپروکسیفن که ترکیب شبههورمون جوانی است، می تواند به عنوان یکی از حشره کشهای طبیعی برای استفادهی بالقوه در مدیریت تلفیقی آفات (IPM) علیه سوسک برگخوار نارون مصرف شود.
واژگان کلیدی: Xanthogaleruca luteola پیریپروکسیفن، اثرات زیرکشندگی، تغییرات آنزیمی و غیر آنزیمی، شبههورمون جوانی

Introduction

The elm leaf beetle, *Xanthogaleruca luteola* Müller, is one of the important pests of elm (*Ulmus* spp.) in some parts of the central and southern Europe, north Africa, west and central Asia, southern Australia and temperate areas in the North and South America (Romanyk & Cadahía 2002; Borowiec & Sekerka 2010). Both the larvae and adults of *X. luteola* feed on the emergent leaves. Repeated infestations make the

tree susceptible to different pests and diseases, (Pérez, 2003).

The unselective use of chemical pesticides is harmful to the environment, beneficial species and the human health (Perry *et al.*, 1998). Insect growth regulators (IGRs), interfere with cuticle formation in a numerous insect groups (Cohen, 2001). They are also regarded as larvicides and ovicides (Lee *et al.*, 1996). The sublethal doses of pesticides are considered as environmentally friendly alternatives to improve

existing pest management strategies (Sial & Brunner, 2010). The sublethal doses influence the biology and physiology of insects that are survived after pesticide usage (Desneux et al., 2004). Certain studies have the sublethal concentrations shown that pyriproxyfen affect a number of physiological parameters including feeding activity and larval duration (Yin et al., 2008; Nasr et al., 2010). The sublethal doses of pyriproxyfen also affect biochemistry of tested insects including protein, cholesterol, glucose and uric acid levels, etc. (Zibaee et al., 2011; Bemani et al., 2013). The objective of the present study was to investigate the effects of this biorationale product on an urban pest, X. luteola., also to probe in particular the effects of sublethal doses on the possible irreversible biochemical changes on X. luteola by this insecticide.

Materials and methods

Source of the insects

Xanthogaleruca luteola eggs and larvae were collected from elm trees in the city park of Rasht, north of Iran. The larvae were reared in plastic boxes (10-20 cm) in a rearing chamber set at 25 ± 2 °C; 14: 10 L: D; 65% RH. Fresh elm leaves were provided daily for feeding. Adults were reared similarly and their eggs were used to maintain the culture. Newly emerged (< 24 hrs) third instar larvae of the same age were used for bioassay.

Toxicity tests

Oral toxicity tests were performed on newly emerged 3rd instar larvae of X. luteola with different concentrations of pyriproxyfen (Admiral® 10% EC, Arista life Science France). In each experiment, 10 larvae were tested with 5 replicates in each concentration. The leaf discs (10×20 cm) were dipped in desired concentrations for 30 s and dried at room temperature for 30 min. Water dipped leaf discs were used as control. Mortality was recorded after 72 h and the LC₅₀ and LC₃₀ were estimated using POLO-PC software (LeOra, 1987).

Deterrent effects

This experiment was performed as described by Xie & Isman (1992). Two leaves of elm tree with the same size (10×20 cm) were selected, dipped in the desired concentrations (343 and 133 ppm) for 30 s and air dried for 30 min. Control leaf discs were dipped in distilled water. The leaves were placed 7 cm far from each other. Then the third instar larvae (< 24 hrs) were placed in the centre of each jar (three replicates and 10 larvae in each group). The number of larvae attracted to the control or treated leaf discs were recorded after 24 and 48 hrs. Deterrence index (DI) was calculated from the following formula of Xie & Isman (1992):

$$DI = (C - T) / (C + T) \times 100$$

where C is the number of larvae on the control leaf and T is the number of larvae on the treated leaves.

Effect of pyriproxyfen on the development of *X. luteola* larvae

The duration of larval life were evaluated after the treatment with two concentrations of the tested insecticide (343 and 133 ppm). Distilled water was used as the control. Larval duration was recorded in days after the treatment.

Preparation of the whole body homogenates for biochemical analysis

The pyriproxyfen treated third instar larvae (concentrations 343 and 133 ppm) were killed by freezing after 24, 48 and 72 hours of the treatment. The whole body was homogenized in 1 ml of universal buffer and were centrifuged for 10 min at 13000 g. The supernatant was transferred to new tubes and stored at -20 °C until used. Each biochemical analysis was repeated three times.

Determination of protein concentration

Protein concentration was determined by the method of Bradford (1976). First, each larva (whole body) was homogenized in 350 μ l of distilled water and samples were centrifuged at 10000 g for 5 min at 4 °C. Then, 10 μ l of the supernatant was mixed with 90

µl of distilled water and 2500 µl dye (dissolving 10 mg powder of Coomassie Brilliant Blue G-250 (Bio-Red, Munchen, Germany) in 5 ml ethanol 96% and 10 ml phosphoric acid 85% (w/w) and the volume was brought to 100 ml with distilled water). The absorbance was read at 595 nm using a microplate reader (Stat Fax 3200, Awareness Technology, USA).

Determination of glucose and glycogen levels

Glucose level was analyzed by Siegert's (1987) protocol and glycogen amount was determined by a photometric method using anthrone reagent as described by Van Handel (1965). The anthrone reagent was prepared by dissolving 0.15 g in 100 ml of diluted sulphuric acid (76 ml sulphuric acid, d =1.84, in 30 ml water while stirring and cooling). One ml of homogenized body was stirred with 0.05 ml of saturated solution of Na₂So₄ in a centrifuge tube, followed by adding 3 ml of ethanol. The tube was placed in a boiling water-bath for 3 min and cooled in an ice-bath for at least 1 hour and then centrifuged. The glycogen pellet (+Na₂SO₄) was dissolved in 0.05 ml water after drying. 3 ml of freshly prepared anthrone reagent was added and the tube was heated at 90 °C for 20 min, cooled in ice water and the samples absorbance was read at 620 nm.

Determination of uric acid and urea values

Uric acid contents were determined using uricase as described by Valovage & Brooks (1979); uricase produces a purplish color which has a direct correlation (at 545 nm) with uric acid concentration. Urea was measured with urease-GDH kit (Biochem. Co, Iran) at 340 nm following the manufacturer's protocol.

Determination of cholesterol level and α -amylase specific activity

Cholesterol level was determined by Richmond's (1973) method. This method is based on hydrolysis of cholesterol esters by cholesterol oxidase, cholesterol esterase and peroxidase.

The α -amylase specific activity was measured by the procedure of Bernfeld (1955), using 1% soluble starch as substrate. The reaction was performed by sodium phosphate buffer at 35 °C with 10 μ l of the enzyme, 40 μ l substrate in 40 μ l sodium phosphate buffer (pH 6) for 30 min. To stop the reaction, 100 μ l dinitro salicylic acid (DNS) was added and heated in boiling water for 10 min. Absorbance was read at 540 nm.

Determination of acid phosphatase and alkaline phosphatase specific activities

These enzymes specific activities were determined by Bessey assay (Bessey *et al.*, 1946). The substrate in phosphate buffer (0.02 M, pH 7.2) was incubated with samples for 30 min. Alkaline was added to stop the reaction and adjusted pH for the determination of product concentration. The spectral absorbance of *p*-nitrophenolate was maximal at 310 nm. On converting the *p*-nitrophenolate into *p*-nitrophenol by acidification, the absorption maximum is shifted to about 320 nm.

Determination of aspartate and alanine aminotransferases specific activities

Alanine aminotransferase and aspartate aminotransferase activities were measured using Thomas' (1998) procedure. This assay was done by AST and ALT kit (Biochem Co., Iran). Absorbance was read at 340 nm.

Determination of esterases and glutathione S-transferase specific activities

The specific activity of α and β esterases were determined according to Van Asperen's (1962) method. Alpha-naphtylacetate (α -NA) and β -naphtylacetate (β -NA) (10 mM) were used as substrates. One gut was homogenized with 1000 μ l 0.1 M phosphate buffer (pH 7) containing 0.01% Triton x-100, then the homogenized solution was centrifuged at 10000 g for 10 minutes at 4 °C. The supernatant was transferred to a new microtube and was diluted with phosphate

buffer. This solution reacted with the substrate and by using dye indicator (Fast Blue RR salt) (1 mM) a colored solution was formed and the absorbance was read at 630 nm. For determination of the glutathione S-transferase (GST) specific activity, the method of Oppenorth (1979) was used. 1-chloro-2, 4-dinitrobenzene (CDNB) (20 mM) was used as the substrate. Initially a larva was homogenized in 20 µl distilled water, then the homogenate was centrifuged at 12500 g for 10 minutes at 4 °C. Fifteen µl of the supernatant was mixed with 135 µl of phosphate buffer (pH 7) and 50 µl of CDNB. The absorbance was read at 340 nm.

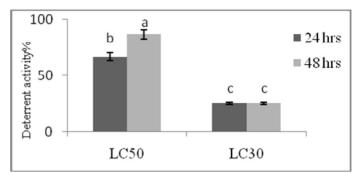
Statistical analysis

For the determination of mortality and lethal concentrations, POLO-PC software (LeOra, 1987) was used. The other data were subjected to analysis of variance (ANOVA) using SAS software (SAS Institute, 1997). The least significant among treatments were compared using Tukey's multiple range test (SAS Institute, 1997). Differences among means were considered significant at $P \le 0.05$.

Results

The corresponding LC_{50} and LC_{30} values, confidence limit (95%) and regression slope at 72 hours after exposure to pyriproxyfen are depicted in (table 1). The LC_{50} and LC_{30} values for pyriproxyfen were estimated as 343 and 133 ppm, respectively.

Deterrence effects of pyriproxyfen on third-instar larvae was calculated after 24 and 48 hours (fig. 1). With the increase in concentrations and time, the percentage of deterrence activity increased and the maximum deterrent activity (i.e. 86.6%) occurred at 48 hours after treatment with LC_{50} (F = 150.72; df = 3, 8; P < 0.0001). The duration of the larval stage


significantly increased in the treated larvae (F = 65.82; df = 2, 6; P < 0.0001) compared with the controls (table 2).

A significant reduction was observed in the amount of total protein in the treated larvae with all the concentrations of pyriproxyfen tested (F = 15.30; df = 2, 6; P = 0.0044) (fig. 2). No significant changes were observed in cholesterol level after 24 and 48 hours. However, the amount of cholesterol increased in both the concentrations used after 72 hours of the treatment (F = 9.43; df = 2, 6; P < 0.0144) (fig. 2). The amount of glucose was highly decreased in the treated samples by pyriproxyfen after 24 and 72 hours but there were no significant differences at 48 hours of the treatment (F = 7.33; df = 2; P = 0.0245) (fig. 2). The amount of glycogen was highly decreased after the treatment by pyriproxyfen at three intervals (F = 32.72; df = 2; P =0.0006) (after 24, 48 and 72 hours) (fig. 2). The amount of urea was decreased in treated specimens compared with the controls at three intervals. While the amount of uric acid significantly increased with LC₃₀ (133 ppm) but its concentration decreased at LC₅₀ (343 ppm) after 48 hours (F = 31.97; df = 2; P = 0.0006) (fig. 2).

On the other hand, pyriproxyfen caused significant decrease in the α -amylase activity with both the concentrations after 24 hours (F = 19.39; df = 2; P = 0.0024), but there were no significant differences after 48 and 72 hours between the treated insects and the controls (fig. 3). Alkaline and acid phosphatase activities (U/mg protein) of larvae were significantly affected by different concentrations of pyriproxyfen (fig. 4). Also, the results showed that alkaline phosphatase activity increased significantly after 24 hours of the treatment and then decreased at 48 and 72 hours (F = 7.58; df = 2; P = 0.0228). Acid phosphatase activity decreased in the treated samples in comparison

Table 1. The LC₅₀ and LC₃₀ values confidence limit (%95) and regression slope after 72 hours of exposure to pyriproxyfen in larvae of *Xanthogaleruca luteola*.

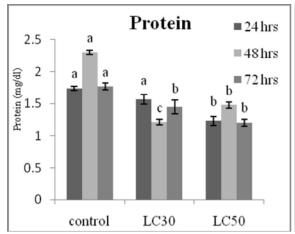
Toxic material	Slope \pm SE	$X^{2}(df)$	LC ₅₀ (95% CI) (ppm)	LC ₅₀ (95% CI) (ppm)
Pyriproxyfen	1.194 ± 0.167	0.581(3)	343 (218-428)	133 (66-168)

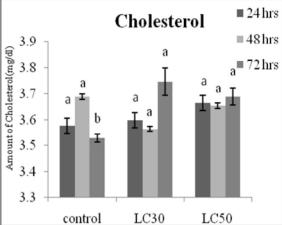
Fig. 1. Deterrent activity of pyriproxyfen against the 3rd instar larvae of *Xanthogaleruca luteola*.

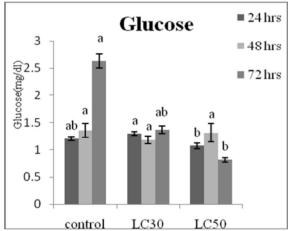
with the controls after 24 hours and then an increase was observed after 48 hours (F = 7.77; df = 2; P =0.0216). Significant effects on alanine (ALT) and aspartate (AST) aminotransferases activities were observed by two different concentrations of pyriproxyfen (fig. 5). Both concentrations increased the activity of ALT at various time intervals (F = 25.65; df = 2; P = 0.0011). In the case of AST, the enzyme activity was decreased due to the treatment with both concentrations after 48 and 72 hours, but on the contrary no difference was observed after 24 hours (F = 10.65; df = 2; P = 0.0106) (this amount of P indicate that it was significant). By measuring two detoxifying enzymes activities, general esterases and glutathione S-transferase, it was found that glutathione S-transferase is the main detoxifying enzyme of pyriproxyfen in X. luteola. The LC₅₀ and LC₃₀ of pyriproxyfen increased glutathione S-transferase activity significantly (fig. 6). The two concentrations of pyriproxyfen decreased general esterase activity after 48 hours of the treatment especially when α -naphtyl was used as substrate (F = 23.30; df = 2; P = 0.0015) but no differences were observed after 24 and 72 hours (fig. 7).

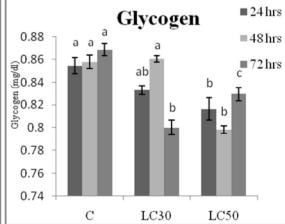
Table 2. Life cycle of the 3rd instar larvae of *Xanthogaleruca luteola* after the treatment with pyriproxyfen.

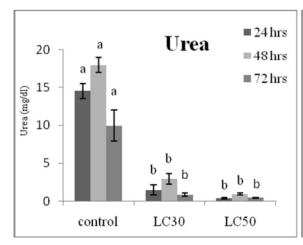
Treatments	3rd Instar larval duration (day)	Pupal and adult emergence
LC ₅₀	15.66 ± 0.66 a	0
LC_{30}	13.00 ± 0.55 a	0
Control	5.666 ± 0.759 b	96.667 ± 2.402


Means followed by the same letter within a column are not significantly different from each other at P < 0.05, Tukey's studentized range test.


Discussion


Pyriproxyfen has attracted considerable attention recently for its inclusion in the integrated pest management (IPM) programs (Boina et al., 2009). This compound affects insects by being toxic and causing a delay in larval growth and can act as an antifeedant agent (Nasr et al., 2010). The results show its strong insecticidal, feeding deterrence, insect growth regulatory activities with some irreversible effect on the biochemistry of elm leaf beetle. Zapata et al. (2009) stated that the deterrent activity of any chemical used for insect control programs could be attributed to their effects on chemical sensila located in mouthparts via central nervous system. The results showed that pyriproxyfen had deterrent activity against X. luteola larvae. The deterrence increased as the concentrations of the insecticide and the treatment time increased.


A similar effect by pyriproxyfen was observed against *Tribolium confusum* Duval (in choice and no choice experiments) by Loni & Farazmand (2010). Nasr *et al.* (2010) reported that by increasing pyriproxyfen concentration and the treatment time, the feeding inhibition index was increased in the larvae of *Spodoptera littoralis* (Boisd.).


In this study, despite the increase in larval duration, growth retardation was reflected by lower larval weight. Pyriproxyfen as a juvenile hormone analogue, by interrupting hormonal balance, caused prolonged larval period. A majority of reports show an increase in larval period (Mojaver & Bandani, 2010; Naggar & Jehan, 2013) by using IGRs.

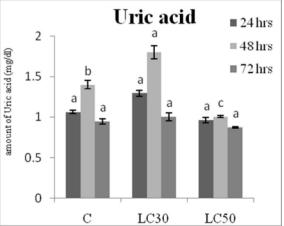


Fig. 2. Changes of some non-enzymatic compounds caused by two concentrations of pyriproxyfen in various time intervals (hours). Statistical differences are shown by different letter in each interval (Tukey's test; $P \le 0.05$)

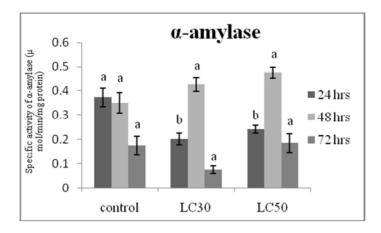


Fig. 3. The specific activity of α-amylase (μ mol/min/mg protein) in the 3rd instar larvae of *Xanthogaleruca luteola* after the treatment with pyriproxyfen. Statistical differences are shown by different letter in each interval (Tukey's test; $P \le 0.05$).

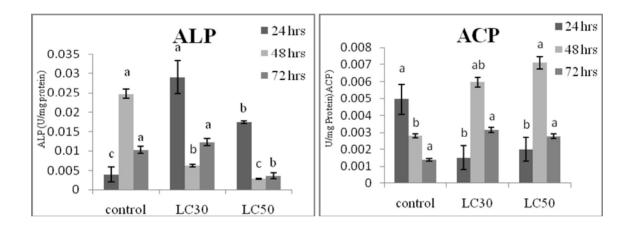


Fig. 4. Effect of pyriproxyfen on alkaline phosphatase and acid phosphatase specific activities in *Xanthogaleruca luteola* larvae (3rd instar). Statistical differences are shown by different letter in each interval (Tukey's test; $P \le 0.05$).

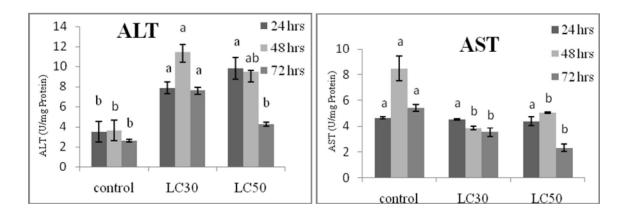


Fig. 5. Effect of pyriproxyfen on alanine aminotransferase and aspartate aminotransferase specific activities in *Xanthogaleruca luteola* larvae (3rd instar). Statistical differences are shown by different letter in each interval (Tukey's test; $P \le 0.05$).

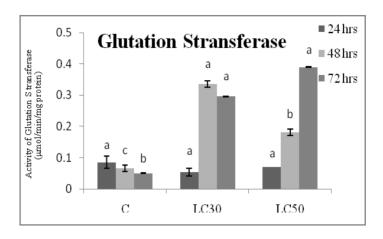


Fig. 6. The specific activities of glutathione S-transferase (μ mol/min/mg protein) in the 3rd instar larvae of *Xanthogaleruca luteola* after the treatment with pyriproxyfen. Statistical differences are shown by different letter in each interval (Tukey's test; $P \le 0.05$).

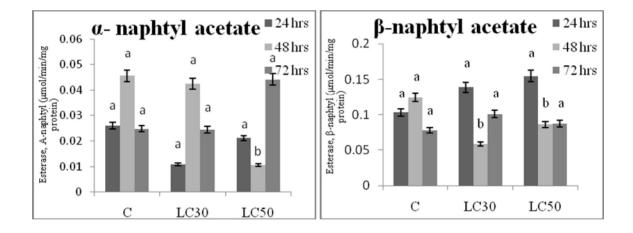


Fig. 7. The specific activities of esterases (μ mol/min/mg protein) in the 3rd instar larvae of *Xanthogaleruca luteola* after the treatment with pyriproxyfen. Statistical differences are shown by different letter in each interval (Tukey's test; $P \le 0.05$).

Many insecticides have antifeedant effect and decrease insect feeding efficiency which affects protein biosynthesis and accumulation (Etebari *et al.*, 2007). The results showed that the amount of total protein decreased in the treated larvae after all the time intervals. This phenomenon could be due to break down of proteins into free amino acids which are transferred into the Kreb's cycle (Schoonhoven, 1982).

Lipids are significant molecules in biological systems and have different roles in the physiology of insects such as synthesis of phospholipids that are considered as an integral part of a cell membrane. They are also considered as part of various hormones and serve as sources of metabolic energy that can be mobilized to meet the energy requirements of the insect (Klowden, 2007). Increase in the amount of cholesterol after 24 hours could be due to the stress caused by the chemical treatment. This finding is in consistent with the reports of Cox *et al.* (1989) who found a significant increase in total cholesterol concentration after the treatment of female mice with pyriproxyfen.

The results showed a sharp decrease in the glycogen and glucose values after the larval treatment of elm leaf beetle with pyriproxyfen. The decrease in

the amounts of certain compounds such as glycogen and glucose which was caused by pyriproxyfen as a physiological stress could also be attributed to an interruption in the absorption system (Etebari & Matindoost, 2004). These results are in agreement with the works of other researchers (Sharma *et al.*, 2011; Bemani *et al.*, 2013; Yazdani *et al.*, 2013).

Amounts of urea and uric acid in the body depend on the reactions taking place after protein metabolism; in fact they are the excreted end product of insects. Hence, their amount is correlated with the amount of protein in the insect's body (Shekari et al., 2008). One of the important reasons for measuring uric acid and urea is to know about the nitrogen catabolism, because it has been reported that pyriproxyfen has a direct effect on nitrogen metabolism (Hirayama & Nakamura, 2002). After 48 hours of the treatment with pyriproxyfen, the amount of uric acid increased in the treated larvae with LC₃₀ concentration. This result indicates that the increase in uric acid level is probably due to the altered metabolic pathway caused by the treatment which prevented the natural excretion of uric acid from the insect body (Shekari et al., 2008).

Alpha-amylase is an enzyme hydrolyzing starch to maltose and glycogen to glucose. The present study clearly depicts the enzyme's lower activity following the treatment with pyriproxyfen, which is in agreement with other reports (Lee *et al.*, 1996; Abd EL-Mageed & Shalaby, 2011).

Alkaline phosphatase and acid phosphatase are hydrolytic enzymes, which hydrolyze phosphomonoesters under alkaline or acid conditions, respectively. The results showed that there were significant changes in the activities of ALP and ACP following the treatment with pyriproxyfen. There are different reports in this regard; as per the results of Zibaee *et al.* (2011) the treatment with pyriproxyfen in *Eurygaster integriceps* Puton increased ALP and ACP

activities. While Adel *et al.* (2010) reported reduction in their activities in *S. littoralis* under the effect of *Artemisia monosperma* Del. wild plant hexane extract.

Alanine aminotransferase and aspartate aminotransferase have important role in Kreb's cycle for acquiring energy necessary in growth and reproduction. In the present investigation, a potent inhibitory effect on AST and increasing effect on ALT have been observed. Zibaee *et al.* (2011) and Etebari *et al.* (2007) also have shown an increase in ALT activity in *E. integriceps* adult and a decrease in AST activity in silkworm larvae, respectively.

Esterases (ESTs) are important detoxifying enzymes which hydrolyse the esteric bond in synthetic chemicals (Hemingway & Karunatne, 1998). The activity of glutathione S-transferase in detoxification process is well known, too (Devorshak & Roe, 1998). Pyriproxyfen caused a decrease in the esterases activity with both the concentrations after 48 hours of the treatment. In addition, glutathione S-transferase activity was increased significantly by both the concentrations of pyriproxyfen after 48 and 72 hours of the treatment. These results are similar to Fahmy (2012) investigations about the effect of pyriproxyfen on S. littoralis. Detoxification and the activity of detoxifying enzymes consume lots of energy which lead to the increase in larval life duration (Devorshak & Roe, 1998).

The present study shows that pyriproxyfen not only causes direct mortality (lethal effects) on larvae but also its sublethal doses affect various physiological processes in elm leaf beetle. These activities include deterrence, delay in larval development, reduction of the larval weight and irreversible changes in biochemical components. Hence, it can be concluded that pyriproxyfen can be considered in the integrated pest management program of elm leaf beetle, where classical insecticides are not considered.

References

Abd EL-Mageed, A. E. M. & Shalaby, S. E. M. (2011) Toxicity and biochemical impacts of some new insecticide mixtures on cotton leaf worm *Spodoptera littoralis* (Boisd.). *Plant Protection Science* 47, 166-175.

- **Adel, M. M., El-Hawarya, F. M., Abdel-Aziza, N. F. & Sammour, E. A.** (2010) Some physiological, biochemical and histopathological effects of *Artemisia monosperma* against the cotton leafworm, *Spodoptera littoralis*. *Archives of Phytopathology and Plant Protection* 43, 1098-1110.
- **Bemani, M., Izadi, H. & Mahdian, K.** (2013) Effects of pyriproxyfen on some physiological aspects of the pistachio fruit hull borer, *Arimania comaroffi* Ragonot, pupae. *Archives of Phytopathology and Plant Protection* 20, 2436-2442.
- **Bernfeld, P.** (1955) Amylases, α and β. *Methods in Enzymology* 1, 149-158.
- **Bessey, O. A., Lowry, O. H. & Brock, M. J.** (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. *The Journal of Biological Chemistry* 164, 321-329.
- Boina, R. D., Meyer, W. L., Onagbola, E. O. & Stelinski, L. L. (2009) Quantifying dispersal of *Diaphorina citri* (Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management. *Environmental Entomology* 38, 1250-1258.
- Borowiec, L. & Sekerka, L. (2010) Cassidinae. pp. 64-65, 368-390 in Löbl, I. & Smetana, A. (Eds) *Catalogue of Palaearctic Coleoptera: Chrysomeloidea*. Vol. 6, 924 pp. Apollo Books, Stenstrup.
- **Bradford, M. M.** (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. *Analytical Biochemistry* 72, 248-254.
- Cohen, E. (2001) Chitin synthesis and inhibition: a revisit. Pest Management Science 57, 946-950.
- Cox, R. H., Zoetis, T., Cardy, R. H., Alsaker, R. D., Kuhlman, S. M., Lewis, S. A., Thakur, A. K. & Phipps, N. (1989) Subchronic toxicity study with S-31183 in rat. Unpublished study from Hazleton Laboratories America, Inc. Reference No. NNT-910045. Submitted to WHO by Sumitomo Chemical Co., Ltd.
- **Desneux, N., Rafalimanana, H. & Kaiser, L.** (2004) Dose-response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp *Aphidius ervi. Chemosphere* 54, 619-627.
- **Devorshak, C. & Roe, R. M.** (1998) The role of esterases in insecticide resistance. *Critical Reviews in Toxicology* 2, 501-537.
- Etebari, K., Bizhannia, A. R., Sorati, R. & Matindoost, L. (2007) Biochemical changes in hemolymph of silkworm larvae due to pyripyroxyfen residue. *Pesticide Biochemistry and Physiology* 88, 14-19.
- **Etebari, K. & Matindoost, L.** (2004) The study on effects of larval age and starvation stress on biochemical macromolecules abundance of haemolymph in silkworm *Bombyx mori. Proceedings of the 16th Iranian Plant Protection Congress, Vol. I, Pests*, p. 435.
- **Fahmy, N. M.** (2012) Impact of two insect growth regulators on the enhancement of oxidative stress and antioxidant efficiency of the cotton leaf worm, *Spodoptera littoralis* (Biosd.). *Egyptian Academic Journal of Biological Sciences* 5, 137-149.
- **Hemingway, J. & Karunatne, S. H. P.** (1998) Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. *Medical and Veterinary Entomology* 12, 1-12.
- **Hirayama, C. & Nakamura, M.** (2002) Regulation of glutamine metabolism during the development of *Bombyx mori* larvae. *Biochimicaet Biophysica Acta* 1571, 131-137.
- Klowden, M. J. (2007) Physiological systems in insects. 688 pp. Academic Press.
- Lee, D. P., Thirugnanam, M., Lidert, Z., Carlson, G. R. & Ryan, J. B. (1996) RH-2485: a new selective insecticide for caterpillar control. *Proceedings of the Brighton Crop Protection Conference*, pp. 481-486.
- LeOra (1987) POLO-PC: a user guide to probit or logit analysis. LeOra software, Berkeley, California.

- **Loni, S. & Farazmand, H.** (2010) Effect of teflubenzuron, hexaflumuron and pyriproxyfen compounds on nutritional indices of confused flour beetle, *Tribolium confusum* Duval (Col.: Tenebrionidae). *Journal of Plant Protection* (*Agricultural Science and Technology*) 24, 159-164. [In Persian with English summary].
- **Mojaver, M. & Bandani, A. R.** (2010) Effects of the insect growth regulator pyriproxyfen on immature stages of sunn pest, *Eurygaster integriceps* Puton (Heteroptera: Scutelleridae). *Munis Entomology and Zoology Journal* 5, 187-197.
- **Naggar, E. l. & Jehan, B. A.** (2013) Sublethal effect of certain insecticides on biological and physiological aspects of *Spodoptera littoralis* (Boisd.). *Natural science* 11, 19-25.
- Nasr, H. M., Badawy, M. E. I. & Rabea, E. I. (2010) Toxicity and biochemical study of two insect growth regulators, buprofezin and pyriproxyfen, on cotton leaf worm *Spodoptera littoralis*. *Pesticide Biochemistry and Physiology* 98, 198-205.
- **Oppenorth, F. J.** (1979) Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of house fly and their influence on resistance. *Pesticide Biochemistry and Physiology* 11, 176-178.
- **Pérez, V.** (2003) Daños producidos por insectos y otros artrópodos. pp. 245-274 in Muñoz, C., Pérez, V., Cobos, P., Hernández, R. & Sánchez, G. (Eds) *Sanidad forestal*. 575 pp. Ediciones Mundi-Prensa, Madrid.
- Perry, A., Yamamoto, S., Ishaaya, I. & Perry, I. (1998) Insecticides in agriculture and environment: retrospects and prospects. 261 pp. Springer, Berlin.
- **Richmond, W.** (1973) Preparation and properties of cholesterol oxidase from *Nocardia* sp. and its application to enzymatic assay of total cholesterol in serum. *Clinical Biochemistry* 19, 1350-1356.
- Romanyk, M. & Cadahía, D. (2002) Plagas de insectos en las masas forestales. 338 pp. Ediciones Mundi-Prensa, Madrid.
- SAS Institute (1997) SAS/STAT user's guide for personal computers. SAS Institute, Cary, NC.
- Schoonhoven, L. M. (1982) Biological aspects of antifeedants. Entomologia Experimentaliset Applicata 31, 57-89.
- Sharma, P., Mohan, L., Dua, K. K. & Srivastava, C. N. (2011) Status of carbohydrate, protein and lipid profile in the mosquito larvae treated with certain phytoextracts. *Journal of Asia-Pacific Entomology* 4, 301-304.
- Shekari, M., Jalali Sendi, J., Etebari, K., Zibaee, A. & Shadparvar, A. (2008) Effect of *Artemisia annua* L. (Asteracea) on nutritional physiology and enzyme activities of elm leaf beetle, *Xanthogaleruca luteola* Mull. (Colepotera: Chrysomellidae). *Pesticide Biochemistry and Physiology* 91, 66-74.
- Sial, A. A. & Brunner, A. J. (2010) Lethal and sublethal effects of an insect growth regulator, pyriproxyfen, on oblique banded leafroller (Lepidoptera: Tortricidae). *Journal of Economic Entomology* 103, 340-347.
- **Siegert, K. J.** (1987) Carbohydrate metabolism in *Manduca sexta* during late larval development. *Journal of Insect Physiology* 33, 421-427.
- Thomas, L. (1998) Clinical laboratory diagnostic. 1st ed. TH Books Verlagsgesellschaft, Frankfurt.
- Valovage, W. D. & Brooks, M. A. (1979) Uric acid quantities in the fat body of normal and aposymbiotic German cockroaches *Blatella germanica*. *Annals of the Entomological Society of America* 72, 687-689.
- Van Asperen, K. (1962) A study of housefly esterases by mean of sensitive colorimetric method. *Journal of Insect Physiology* 8, 401-416.
- Van Handel, E. (1965) Microseperation of glycogen, sugars and lipids. Analytical Biochemistry 11, 266-271.
- Xie,Y. S. & Isman, M. B. (1992) Antifeeding and repellent effect of Meliaceous plants to some insect pest. *Journal South China Agricultural University* 4, 1-7.

- Yazdani, E., Jalali Sendi, J., Aliakbar, A. & Senthil-Nathan, S. (2013) Effect of *Lavandula angustifolia* essential oil against lesser mulberry pyralid *Glyphodes pyloalis* Walker (Lep: Pyralidae) and identification of its major derivatives. *Pesticide Biochemistry and Physiology* 107, 250-257.
- Yin, X. H., Wu, Q. J., Li, X. F., Zhang, Y. J. & Xu, B. Y. (2008) Sublethal effects of spinosad on *Plutella xylostella* (Lepidoptera: Yponomeutidae). *Crop Protection* 27, 1385-1391.
- Zapata, N., Budia, F., Vinuela, E. & Medina, P. (2009) Antifeedant and growth inhibitory effects of extracts and drimanes of *Drimys winteri* stem bark against *Spodoptera littoralis* (Lep: Noctuidae). *Industrial Crops and Products* 30, 119-125.
- **Zibaee, A., Zibaee, I. & JalaliSendi, J.** (2011) A juvenile hormone analog, pyriproxifen, affects some biochemical components in the hemolymph and fat bodies of *Eurygaster integriceps* Puton (Hemiptera: Scutelleridae). *Pesticide Biochemistry and Physiology* 100, 289-298.

Received: 27 December 2013 Accepted: 15 March 2014